• Title/Summary/Keyword: 최소 정점 피복

Search Result 2, Processing Time 0.016 seconds

A Polynomial Time Algorithm for Vertex Coloring Problem (정점 색칠 문제의 다항시간 알고리즘)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.85-93
    • /
    • 2011
  • The Vertex Coloring Problem hasn't been solved in polynomial time, so this problem has been known as NP-complete. This paper suggests linear time algorithm for Vertex Coloring Problem (VCP). The proposed algorithm is based on assumption that we can't know a priori the minimum chromatic number ${\chi}(G)$=k for graph G=(V,E) This algorithm divides Vertices V of graph into two parts as independent sets $\overline{C}$ and cover set C, then assigns the color to $\overline{C}$. The element of independent sets $\overline{C}$ is a vertex ${\upsilon}$ that has minimum degree ${\delta}(G)$ and the elements of cover set C are the vertices ${\upsilon}$ that is adjacent to ${\upsilon}$. The reduced graph is divided into independent sets $\overline{C}$ and cover set C again until no edge is in a cover set C. As a result of experiments, this algorithm finds the ${\chi}(G)$=k perfectly for 26 Graphs that shows the number of selecting ${\upsilon}$ is less than the number of vertices n.

The Four Color Algorithm (4-색 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.113-120
    • /
    • 2013
  • This paper proposes an algorithm that proves an NP-complete 4-color theorem by employing a linear time complexity where $O(n)$. The proposed algorithm accurately halves the vertex set V of the graph $G=(V_1,E_1)$ into the Maximum Independent Set (MIS) $\bar{C_1}$ and the Minimum Vertex Cover Set $C_1$. It then assigns the first color to $\bar{C_1}$ and the second to $\bar{C_2}$, which, along with $C_2$, is halved from the connected graph $G=(V_2,E_2)$, a reduced set of the remaining vertices. Subsequently, the third color is assigned to $\bar{C_3}$, which, along with $C_3$, is halved from the connected graph $G=(V_3,E_3)$, a further reduced set of the remaining vertices. Lastly, denoting $C_3$ as $\bar{C_4}$, the algorithm assigns the forth color to $\bar{C_4}$. The algorithm has successfully obtained the chromatic number ${\chi}(G)=4$ with 100% probability, when applied to two actual map and two planar graphs. The proposed "four color algorithm", therefore, could be employed as a general algorithm to determine four-color for planar graphs.