적응 정합장처리에서 어레이의 센서 수보다 부족한 신호단편 수로 표본 공분산행렬을 구성할 경우 행렬 계수의 부족으로 행렬의 역변환에 문제가 발생된다. 이를 해결하기 위해 표본 공분산행렬의 대각성분에 일정한 값을 더하거나 고유분해와 같은 기법을 사용하나, 그 결과로 프로세서 출력에서는 바이어스가 발생된다. 본 논문은 고정음원에서 신호단편의 수에 따른 적응 프로세서 출력의 바이어스와 음원 위치 추정 결과를 고찰하기 위해 표본 공분산행렬의 대각성분에 일정한 값을 첨가하는 방법으로 최소분산 기법을 사용하여 수치실험과 실측 자료를 분석하였다. 그 결과 센서 수보다 많은 신호단편을 사용하는 것이 바이어스가 적으며, 음원 위치 추정에서도 좋은 성능을 보였다.
본 연구에서는 기존에 수행된 식품 중금속 모니터링 데이터를 이용하여 위해평가 및 모니터링을 수행할 때 요구되는 표본 수를 추정하고자 하였다. 중금속 3종 (카드뮴, 납 및 수은)과 17개의 식품을 대상으로 2,400개의 모니터링 데이터를 선정하여 연구에 활용하였다. 기존의 연구에서 수행된 모니터링 데이터의 표준편차와 오차범위 및 신뢰구간 값(95, 99% CI)을 활용하여 표본 수 추정공식에 따라 계산하였다. 표본 수 추정 공식에 따라 표본 크기를 추정한 결과, 95% 신뢰구간에서 카드뮴의 경우 계산된 표본의 크기는 최소 8개에서 최대 90개, 납의 경우 최소 7개에서 최대 1,062개, 수은의 경우 최소 11개에서 최대 238개로 각각 추정되었다. 식품 중 중금속 데이터의 표준 편차와 오차범위가 표본 수를 추정하는데 가장 큰 영향을 주는 것으로 나타났다. 본 연구에서는 모니터링 데이터의 특성을 반영하여 표본 크기를 추정하고자 하였으며, 이는 향후 위해평가 및 모니터링 수행 계획을 수립하기 위한 표본 수를 결정하는 기초연구로 활용될 수 있을 것이다.
Communications for Statistical Applications and Methods
/
제5권1호
/
pp.99-105
/
1998
본 논문에서는 매우 민감한 조사에서 모집단이 여러 개의 집락으로 구성되어 있을 때, 모집단으로부터 집락을 단순임의추출한 후 추출된 각 집락에서 다시 조사단위의 표본을 추출하는 2단계 집락추출법에 확률화응답모형을 적용하였다. 그리고, 일정한 비용 하에서 분산을 최소로 하는 1단계 집락의 수와 2단계 집락에서 추출된 조사단위의 수의 최적값을 구하여 최소분산의 형태를 도출하였다.
본 논문에서는 다중 대역통과 표본화 이론에 기반하여 1.9GHz IS-95신호와 2.2GHz IMT-2000 신호를 하나의 ADC(analog to digital converter)를 사용하여 동시에 표본화하고 디지털 처리를 수행하는 방법을 제안하고 실험을 통하여 검증하였다. 일반적인 방법으로는 본 논문에서 고려하는 두 신호를 동시에 표본화하기 위해서는 표본화 주파수가 최소한 1GHz 이상의 고속의 ADC를 사용해야 한다. 그러나 현재 ADC의 기술은 광대역의 신호를 직접 더지털화하기에는 아직 미흡하다. 반면에 대역통과 표본화 이론은 기존의 상용 ADC와 기콘의 RF 시스템을 이용하여 다른 대역에 위치한 두 신호를 통합처리 할 수 있는 기반을 제공하고 있다. 본 논문에서는 이러한 대역통과 표본화 이론에 기반을 두고 상용 ADC를 사용하여 표본화 시스템을 구현하여 IS-95신호와 IMT-2000 신호를 표본화하고 이를 컴퓨터에서 디지털 필터를 이용하여 두 신호를 분리하는 실험을 통하여 다중 대역통과 표본화의 적용 가능성을 검증하였다.
얼굴 이미지의 대부분은 표본의 수보다 특징 변수의 수가 많기 때문에 이러한 점을 고려한 특징 추출 방법이 필요하다. 본 논문에서는 부분 최소제곱법을 이용하여 특징 벡터의 차원을 축소하는 방법을 제안한다. 전통적인 차원 축소 방법인 주성분 분석은 클래스의 정보를 고려하지 않고 최대 변이를 가지는 성분을 추출하기 때문에, 클래스의 구분에 필요한 특징을 필수적으로 추출하지 못한다. 이에 비해, 부분 최소제곱법은 클래스 변수에 대한 정보를 포함하여 성분을 추출한다. 그러므로, 분류를 하는데 있어서는 주성분 분석에 의해 추출된 성분보다는 부분 최소제곱법에 의해 추출된 성분이 보다 더 예측적이다. 맨체스터와 ORL 얼굴 데이터베이스를 이용하여 실험한 결과, 분류와 차원 축소 측면에서 주성분 분석 방법보다는 부분 최소제곱법을 이용한 방법이 그 성능이 우수함을 알 수 있었다.
응답면 기법은 수치적 효율성을 증대시키기 위해 구조 신뢰성 해석에 널리 적용되고 있다. 그러나 응답면 기법을 사용한 대형구조물의 신뢰성 해석에는 아직도 과도한 해석시간이 요구되고 비선형성이 큰 한계상태에 대해서는 확률변수에 대한 신뢰도지수의 민감도 측면에서 많은 오차가 발생한다. 그러므로, 이 연구에서는 이동최소제곱근사법을 적용한 새로운 응답면 기법을 제안한다. 기존의 응답면 기법에 사용되어온 최소제곱근사법은 표본점들에 동일한 가중값을 부여하여 응답면 함수의 계수를 결정한다. 반면에 이동최소제곱근사법은 설계점에 가까운 표본점들에 더 높은 가중값을 부여함으로써 설계점 근처에서 한계상태식에 더 가까운 응답면 함수를 제공하여 정확도를 증대시킨다. 이동최소제곱근사법을 이용한 신뢰성 해석 절차를 살펴보면, 먼저 선형 응답면 함수를 생성하여 설계점이 있을 영역을 결정한 다음, 이 영역에서 추출된 표본점들을 이용하여 2차 응답면 함수를 생성한다. 그 다음 단계에서는 기존에 추출된 표본점에 연속적으로 하나의 표본점을 더해가면서 응답면 함수를 더욱더 정확히 근사시킨다. 제안된 방법의 효율성을 검토하기 위해서 기존 연구자에 의해 제안된 수치적 문제 및 트러스 문제들에 대하여 신뢰성 해석을 수행하였다. 그 결과 제안된 방법은 민감도를 포함한 정확성 뿐만 아니라 계산 효율성도 증대시킴을 확인할 수 있었다.
한 시계열의 자기상관계수의 절대값을 시차를 무한대로 접근시켜 가면서 각 시차에 대하여 구하고 이 절대값을 모두 더한 값이 무한일 때 이 시계열은 장기기억을 가진다. 이로 인하여 장기기억 모수를 추정하는데에는 자기상관을 기본으로 한다. 표본의 자기상관과 이론적 자기상관 사이의 거리를 최소하여 추정통계량을 유도하고 있는 것이 일반적이다. 이 경우에는 정상적 과정에 한하여 적용이 가능하다. 시계열은 어느 시계열이던지 간에 이 시계열에 적합한 모형이 존재할 것이고 이 모형을 시계열에 적용하면 잔차 시계열을 얻을 수 있다. 원래 시계열의 이론적 상관 대신 원래 시계열의 잔차 시계열의 자기상관과 표본의 자기상관 사이의 거리를 최소하여 추정통계량을 얻으면 통계량의 계산이 편하고 이 추정량은 정상적 시계열과 비정상적 시계열에 다같이 적용할 수 있다. 본 논문에서는 잔차의 자기상관을 이용하여 자기회귀 분수적분 이동평균 과정의 모수 추정량을 도출한다. 그리고 이 추정 통계량에 입각하여 주가의 형성과정을 살펴보고 장기기억이 옵션가격과 포트폴리오 구성에 미치는 영향을 밝힌다.
이변량 빈도해석은 일반적으로 고정지속기간 강우량에 대해 빈도해석하는 단변량 빈도해석에 비해 지속기간을 확률변수로 이용하여 강우량과 동시에 확률변수로 사용할 수 있다는 장점이 있다. 하지만 확률분포형의 차원이 증가하기 때문에 기존 단변량 빈도해석에서 요구되던 표본크기보다 더 많은 표본이 필요하다. 우리나라 강우관측소의 경우 오래된 관측소의 경우에도 기록년수가 60년을 넘지 않아 연최대계열로 확률표본을 작성할 경우 이변량 빈도해석을 수행하기에 부족할 수 있다. 따라서 본 연구에서는 Peaks Over Threshold (POT) 방법을 이용하여 적정 확률표본을 선택하는 연구를 진행하였다. 서울 기상청 지점의 강우자료로부터 최소무강우시간을 이용하여 모든 강우사상을 추출하였으며 각 강우사상의 강우량과 지속기간이 확률변수로 사용되었다. 기존에 알려진 POT 방법들과 Anderson-Darling 적합도 검정을 이용한 절단값 산정방법등을 적용하여 확률표본 개수의 변화에 따른 주변분포형의 적합도 검정과 이변량 확률모형의 적합성을 살펴보았다.
Journal of the Korean Data and Information Science Society
/
제27권5호
/
pp.1317-1325
/
2016
본 연구에서는 한국고용정보원에서 실시한 "2013 고졸자 취업진로조사" 자료를 활용하여 특성화고 졸업자의 임금결정요인을 분석하였다. 일반적으로 임금은 개인의 취업여부와 임금의 크기에 대한 두 가지의 복합적인 정보를 담고 있다. 그러나 임금 결정요인분석의 많은 선행연구에서는 후자의 정보만을 대상으로 최소제곱법에 기초한 선형 회귀분석을 수행함으로써 표본선택에 의한 편의 (sample selection bias) 문제가 발생하게 된다. 본 연구에서는 임금결정요인분석에서 표본선택에 의한 편의 문제를 극복하기 위해 Tobit 모형과 Heckman의 표본선택 모형을 분석에 활용하였다. 주요 분석 결과를 요약하면 다음과 같다. 먼저 Tobit 모형과 Heckman의 표본선택 모형에 대한 타당성은 통계적으로 유의함을 알 수 있었다. 성별은 취업확률과 임금의 크기에서 모두 통계적으로 유의한 것으로 나타났다. 마이스터고 졸업생은 취업확률과 임금의 크기 모두 기타고 졸업생에 비해서 높은 것을 알 수 있었으며, 부모소득이 높을수록 취업확률과 임금의 크기가 모두 통계적으로 유의하게 증가하였다. 부모학력이 고졸이하에 비해서 대졸이상이 취업확률은 통계적으로 유의하게 낮지만, 임금의 크기는 높게 나타났다. 고교성적은 높을수록, 고교 만족도가 높을수록, 그리고 자격증 수가 많을수록 취업확률과 임금의 크기 모두 통계적으로 유의하게 높은 것을 알 수 있다.
이중추출에서 모평균 추정방법을 고찰하였다. 전통적으로 널리 쓰이는 비추정량과 회귀추정량 그리고 비례배분 및 Rao 배분을 한 후의 층화평균에 대하여 주어진 기대 비용에서 최적의 표본수, 최소분산 및 분산추정량을 살펴보았다. 또한 비추정 및 층화의 효과를 모두 내포하는 결합비 추정량을 제안하고 주어진 기대 비용에서 최적의 표본수 및 최소분산을 유도하였고 분산추정량을 구하였다. 그리고 제한된 모의실험을 통하여 비추정량, 층화평균 및 결합비 추정량의 효율을 비교하였다. 모의실험 결과 비추정량과 층화평균은 경우에 따라 효율이 다르게 나타난 반면, 결합비 추정량은 대체로 두 방법보다 효율이 우수하게 나타나 결합비 추정량이 이중추출에 유용하게 쓰일 수 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.