• Title/Summary/Keyword: 최소자승 추정법

Search Result 234, Processing Time 0.029 seconds

Ultrasonic Distance Measurement Method Based on Received Signal Model (수신 신호 모델을 이용한 초음파 거리 측정 방법)

  • Choe, Jin-Hee;Cho, Whang;Choy, Ick
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • Most of present ultrasonic distance measurement technologies are based on the measurement of the TOF (: Time of Flight), the elapsed time during which the ultrasonic wave travels from its transmitter to receiver, to evaluate the distance the wave travels during that time. In this case, high distance measurement accuracy requires an accurate measurement of TOF. In order to acquire an accurate TOF, this paper proposes a method that produces the TOF by using a mathematical model of the received signal obtained from a mathematical model of ultrasonic transducer. The proposed method estimates the arrival time of the received signal retrospectively by comparing its wave form obtained after triggering point with its mathematical model in the sense of least-square. Experimental result shows that the effect of variation of triggering point can be decreased by implementing the proposed method.

Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases (강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계)

  • Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.586-591
    • /
    • 2014
  • In this study, we introduce Radial Basis Function Neural Networks(RBFNNs) classifier using Artificial Bee Colony(ABC) algorithm in order to classify between precipitation event and non-precipitation event from given radar data. Input information data is rebuilt up through feature analysis of meteorological radar data used in Korea Meteorological Administration. In the condition phase of the proposed classifier, the values of fitness are obtained by using Fuzzy C-Mean clustering method, and the coefficients of polynomial function used in the conclusion phase are estimated by least square method. In the aggregation phase, the final output is obtained by using fuzzy inference method. The performance results of the proposed classifier are compared and analyzed by considering both QC(Quality control) data and CZ(corrected reflectivity) data being used in Korea Meteorological Administration.

Pointing Accuracy Analysis of Space Object Laser Tracking System at Geochang Observatory (거창 우주물체 레이저 추적 시스템의 추적마운트 지향 정밀도 분석)

  • Sung, Ki-Pyoung;Lim, Hyung-Chul;Park, Jong-Uk;Choi, Man-Soo;Yu, Sung-Yeol;Park, Eun-Seo;Ryou, Jae-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.953-960
    • /
    • 2021
  • Korea Astronomy and Space Science Institute has been verifying the multipurpose laser tracking system with three functions of satellite laser tracking, adaptive optics and space debris laser tracking for not only scientific research but also national space missions. The system employs an optical telescope consisting of a 100 cm primary mirror and an altazimuth mount for fast and precise tracking. The precise pointing and tracking capability in a tracking mount is considered as one of important performance metrics in the fields of automatic tracking and precise application research. So it is required to analyze a mount model for investigating pointing error factors and compensating pointing error. In this study, we investigated various factors causing static pointing errors of tracking mount and analyzed the pointing accuracy of the tracking mount at Geochang observatory by estimating mount parameters based on the least square method.

Performance Comparison of Wave Information Retrieval Algorithms Based on 3D Image Analysis Using VTS Sensor (VTS 센서를 이용한 3D영상 분석에 기초한 파랑 정보 추출 알고리즘 성능 비교)

  • Ryu, Joong-seon;Lim, Dong-hee;Kim, Jin-soo;Lee, Byung-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.519-526
    • /
    • 2016
  • As marine accidents happen frequently, it is required to establish a marine traffic monitoring system, which is designed to improve the safety and efficiency of navigation in VTS (Vessel Traffic Service). For this aim, recently, X-band marine radar is used for extracting the sea surface information and, it is necessary to retrieve wave information correctly and provide for the safe and efficient movement of vessel traffic within the VTS area. In this paper, three different current estimation algorithms including the classical least-squares (LS) fitting, a modified iterative least-square fitting routine and a normalized scalar product of variable current velocities are compared with buoy data and then, the iterative least-square method is modified to estimate wave information by improving the initial current velocity. Through several simulations with radar signals, it is shown that the proposed method is effective in retrieving the wave information compared to the conventional methods.

Optimal design of PID controllers including Smith predictor structure by the model identification (모델 동정에 의한 Smith predictor 구조를 갖는 최적의 PID 제어기 설계)

  • Cho, Joon-Ho;Hwang, Hyung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.25-32
    • /
    • 2007
  • In this paper, a new method for first order plus dead time(FOPDT) model identification is proposed, which can identity multiple points on a process step response in terms of classification of time response. The process input and output to the test are decomposed into the transient part and the steady-state part. The steady-state part express one FOPDT model and the transient part express variously FOPDT model using least square estimation method. The optimum parameter tuning algorithm for PID controller of the Smith Predictor is proposed through ITAE as performance index. The Simulation results show the validity and improvement of performance for various processes.

Estimation of kerosene demand function using time series data (시계열 자료를 이용한 등유수요함수 추정)

  • Jeong, Dong-Won;Hwang, Byoung-Soh;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.245-249
    • /
    • 2013
  • This paper attempts to estimate the kerosene demand function in Korea over the period 1981-2012. As the kerosene demand function provides us information on the pattern of consumer's kerosene consumption, it can be usefully utilized in predicting the impact of policy variables such as kerosene price and forecasting the demand for kerosene. We apply least absolute deviations and least median squares estimation methods as a robust approach to estimating the parameters of the kerosene demand function. The results show that short-run price and income elasticities of the kerosene demand are estimated to be -0.468 and 0.409, respectively. They are statisitically significant at the 1% level. The short-run price and income elasticities portray that demand for kerosene is price- and income-inelastic. This implies that the kerosene is indispensable goods to human-being's life, thus the kerosene demand would not be promptly adjusted to responding to price and/or income change. However, long-run price and income elasticities reveal that the demand for kerosene is price- and income-elastic in the long-run.

Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms (최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법)

  • Kim, Dae-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2005
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature spare. This paper describes an alternative approach which uses the least mean square (LMS) method and exportation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximiBation (SAGE) algorithm ill conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor. Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

Design Polynomial Tuning of Multivariable Self Tuning Controllers (다변수 자기동조 제어기의 설계다항식 조정)

  • Cho, Won-Chul;Shim, Tae-Eun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.22-33
    • /
    • 1999
  • This paper presents the method for the automatic tuning of a design weighting polynomial parameters of a generalized minimum-variance stochastic ultivariable self-tuning controller which adapts to changes in the higher order nonminimum phase system parameters with time delays and noises. The self-tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optimizing the design weighting polynomial parameters of the controller. The proposed multivariable self-tuning method is simple and effective compared with pole restriction method. The computer simulation results are presented to adapt the higher order multivariable system with nonminimum phase and with changeable system parameters.

  • PDF

A Design Weighting Polynomial Parameter Tuning of a Self Tuning Controller (자기동조 제어기의 설계 하중다항식 계수 조정)

  • 조원철;김병문
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.87-95
    • /
    • 1998
  • This paper presents the method for the automatic tuning of a design weighting polynomial parameter of a generalized minimum-variance stochastic self tuning controller which adapts to changes in the system parameters with time delays and noises. The self tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optimizing a design weighting polynomial parameters. The proposed self tuning method is simple and effective compared with other existing self tuning methods. The computer simulation results are presented to illustrate the procedure and to show the performance of the control system.

  • PDF

OD Matrix Estimation from Traffic Counts Using Genetic Algorithm (유전알고리즘을 이용한 링크관측교통량으로부터의 기종점 통행행렬 추정)

  • 백승걸
    • Proceedings of the KOR-KST Conference
    • /
    • 2002.02a
    • /
    • pp.17-42
    • /
    • 2002
  • 전통적인 OD조사에 의한 OD추정의 여러 문제점들로 인해 링크관측교통량과 기존OD를 결합해 OD를 추정하고자 하는 연구들이 제시되고 있다. Yang(1995)은 일반화최소자승법을 풀기 위한 IEA와 SAB 알고리즘을 제시하였다. 그러나 두 알고리즘의 문제점은 첫째 실제 OD를 알기가 어렵기 때문에 기존 OD를 중요한 추정기준으로 설정한다는 것으로, 이러한 추정의 종속성으로 인해, 기존 OD와 실제 OD의 차이가 큰 경우 정확한 해를 도출하지 못한다. 두 번째 문제는 통행패턴 추정시 선형근사화를 가정하기 때문에 게임이론적 측면에서 전제로 설정한 완전한 Stackelberg 상황을 구현하지 못한다는 것이다. 이러한 문제점을 피하기 위해서는 기존 OD나 관측교통량의 오차에 일관적인 해도출 기법이 필요하다. OD추정 문제는 본질적으로 비선형이고 비볼록하여 전역해 탐색기법이 필요하기 때문에 전역최적화가 가능한 유전알고리즘을 이용한 OD추정모형(GAM)을 개발하였다. 사례네트워크 분석결과, GAM은 기존 OD의 오차에 대해 크게 종속적이지 않으며 OD구조가 변하는 경우에도 추정이 가능하여, 일반적으로 실제 OD를 알 수 없는(기존OD의 오차가 어느 정도인지를 알 수 없는) 도시부 네트워크에서 신뢰성있는 추정력을 보였다. 또한 기존 OD 추정모형은 비교적 용이하게 차종별로 관측할 수 있는 링크교통량을 차종구분 없이 단일차종으로 이용함으로써, 정보의 손실을 초래하여 결과적으로 모형의 추정력을 저하시켰다. 그렇지만 다차종 링크관측교통량으로부터 다차종 OD 추정연구는 거의 없었으며, 그 결과가 단일차종에 대한 추정결과와 어떻게 다른지에 대한 연구도 전무하였다. 본 연구에서는 유전알고리즘을 이용한 OD 추정모형을 다수단 OD 추정모형(GAMUC)으로 확대하였다. 사례 분석 결과 단일차종 OD추정기법은 심각한 추정오류를 범할 수 있으며, 그 적용성도 낮다는 것을 보였다. 다차종 OD 추정기법이 단일차종 OD 추정기법보다 양호한 추정력을 보였으며, 다차종 기법 중에서는 GAMUC가 IEAMUC보다 우수한 추정력을 보였다.

  • PDF