태양의 활동영역에서 관측할 수 있는 흑점은 주로 흑점군으로 관측되며, 태양폭발현상의 발생을 예보하기 위한 중요한 관측 대상 중 하나이다. 현재 태양 폭발을 예보하는 모델들은 McIntosh 흑점군 분류법을 사용하며 통계적 모델과 기계학습 모델로 나누어진다. 컴퓨터는 흑점군의 형태학적 특성을 연속적인 값으로 계산하지만 흑점군의 형태적 다양성으로 인해 McIntosh 분류를 잘못 분류할 수도 있다. 이러한 이유로 컴퓨터가 계산한 흑점군의 형태학적인 특성을 예보에 직접 적용하는 것이 필요하다. 우리는 흑점군의 형태학적인 특성(개수, 면적, 면적비 등)과 함께 모든 흑점을 정점(Vertex)으로 하고 그 사이를 연결하는 간선(Edge)으로 하는 간선의 거리 합이 최소인 최소신장트리(Minimum spanning tree : MST)를 작성하였다. 이 최소신장트리를 사용하여 흑점군을 검출하고 가장 면적이 큰 정점을 중심으로 트리의 깊이(Depth)와 차수(Degree)를 계산하였다. 이 방법을 2003년 SOHO/MDI의 태양 가시광 영상에 적용하여 구한 흑점군의 내부 흑점수와 면적은 NOAA에서 산출한 값들과 90%, 99%의 좋은 상관관계를 가졌다. 우리는 이 연구를 통해 흑점군의 형태학적인 특성과 더불어 예보에 직접적으로 활용할 수 있는 방법을 논의하고자 한다.
Cluster sensor network is a sensor network where input nodes crowd densely around some nuclei. Steiner minimum tree is a tree connecting all input nodes with introducing some additional nodes called Steiner points. This paper proposes a mechanism for efficient construction of a cluster sensor network connecting all sensor nodes and base stations using connections between nodes in each belonged cluster and between every cluster, and using repetitive constructions of approximate Steiner minimum trees. In experiments, while taking 1170.5% percentages more time to build cluster sensor network than the method of Euclidian minimum spanning tree, the proposed mechanism whose time complexity is O($N^2$) could spend only 20.3 percentages more time for building 0.1% added length network in comparison with the method of Euclidian minimum spanning tree. The mechanism could curtail the built trees' average length by maximum 3.7 percentages and by average 1.9 percentages, compared with the average length of trees built by Euclidian minimum spanning tree method.
무선 센서 & 액터 네트워크(WSAN)와 같이 다수의 베이스 노드가 존재하거나 베이스 노드의 이동성이 큰 센서 네트워크에서 최소 Wiener수 신장 트리(MWST)기반 라우팅 방법은 최소 신장 트리(MST)기반 라우팅 방법에 비해 패킷 전송 거리가 짧고 전력 소모가 적다. 하지만 주어진 그래프로부터 최소 Wiener 수 신장 트리를 찾는 문제는 NP-hard 문제이고 최소 신장 트리에 비해 네트워크 수명이 짧은 단점이 있다. 본 논문은 이러한 문제를 해결하고자 Wiener 수 적응도, 네트워크 수명 적응도, 차수 적응도 등을 동시에 고려한 다목적 유전자 알고리즘을 설계하고 네트워크 전체 전력 소모를 크게 증가시키지 않으면서도 네트워크의 수명을 Wiener 수 적응도만을 사용했을 때 보다 연장시킴을 실험을 통해 보인다.
Given a set S of n points in the plane, a minimum-diameter spanning tree(MDST) for the set might have a degree up to n-1. This might cause the degradation of the network performance because the node with high degree should handle much more requests than others relatively. Thus it is important to construct a spanning tree network with small degree and diameter. This paper presents an algorithm to construct a spanning tree for S satisfying the following four conditions: (1) the degree is controled as an input, (2) the tree diameter is no more than constant times the diameter of MDST, (3) the tree is monotone (even if arbitrary point is fixed as a root of the tree) in the sense that the Euclidean distance from the root to any node on the path to any leaf node is not decreasing, and (4) there are no crossings between edges of the tree. The monotone property will play a role as an aesthetic criterion in visualizing the tree in the plane.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.233-241
/
2014
This paper suggests a fast minimum spanning tree algorithm which simplify the original graph to 2-edge connected graph, and using the cycling property. Borůvka algorithm firstly gets the partial spanning tree using cycle property for one-edge connected graph that selects the only one minimum weighted edge (e) per vertex (v). Additionally, that selects minimum weighted edge between partial spanning trees using cut property. Kruskal algorithm uses cut property for ascending ordered of all edges. Reverse-delete algorithm uses cycle property for descending ordered of all edges. Borůvka and Kruskal algorithms always perform |e| times for all edges. The proposed algorithm obtains 2-edge connected graph that selects 2 minimum weighted edges for each vertex firstly. Secondly, we use cycle property for 2-edges connected graph, and stop the algorithm until |e|=|v|-1 For actual 10 benchmark data, The proposed algorithm can be get the minimum spanning trees. Also, this algorithm reduces 60% of the trial number than Borůvka, Kruskal and Reverse-delete algorithms.
This paper proposes a mechanism for prompt and efficient construction of sensor network connecting sensor nodes and base stations using limited length edges minimum spanning tree. This mechanism can rapidly build a connecting tree which may be used in routing of sensor network. In an experiment for 2000 input terminal nodes, this mechanism can curtail 94.7% construction time comparing with the method by naive minimum spanning tree without tree length overheads. This shows the proposed mechanism can apply well to the application of swift construction of a sensor network.
Journal of the Korea Society of Computer and Information
/
v.19
no.6
/
pp.71-80
/
2014
Employing PTAS to building minimum spanning tree for a large number of equal distribution input terminal nodes can be a effective way in execution time. But applying PTAS to building minimum spanning tree for tremendous unequal distribution node may lead to performance degradation. In this paper, a partial PTAS reflecting the scheme into specific node dense area is presented. In the environment where 90% of 50,000 input terminal nodes stand close together in specific area, approximate minimum spanning tree by our proposed scheme can show about 88.49% execution time less and 0.86%tree length less than by existing PTAS, and about 87.57%execution time less and 1.18% tree length more than by Prim's naive scheme. Therefore our scheme can go well to many useful applications where a multitude of nodes gathered around specific area should be connected efficiently as soon as possible.
In this paper, a mechanism connecting all input edges with minimum length through Steiner tree is proposed. Edges are convertible into communication lines, roads, railroads or trace of moving object. Proposed mechanism could be applied to connect these edges with minimum cost. In our experiments where input edge number and maximum connections per edge are used as input parameters, our mechanism made connection length decrease average 6.8%, while building time for a connecting solution increase average 192.0% comparing with the method using minimum spanning tree. The result shows our mechanism might be well applied to the applications where connecting cost is more important than building time for a connecting solution.
We propose more enhanced heuristic for the GOSST(Grade of Services Steiner Minimum Tree) problem in this paper. GOSST problem is a variation of Steiner Tree problem and to find a network topology satisfying the G-Condition with minimum network construction cost. GOSST problem is known as one of NP-Hard or NP-Complete problems. In previous our research, we proposed a heuristic employing Direct Steiner Point Locating strategy with Distance Preferring MST building strategy. In this paper, we propose new Steiner point locating strategy, Zigzag Steiner point Locating strategy. Through the results of out experiments, we can assert this strategy is better than our previous works. The Distance Zigzag GOSST method which hires the Distance Preferring MST building strategy and Zigzag Steiner point Locating strategy defrays the least network construction cost and brings 31.5% cost saving by comparison to G-MST, the experimental control and 2.2% enhancement by comparison to the Distance Direct GOSST method, the best GOSST method in our previous research.
Journal of the Korea Society of Computer and Information
/
v.17
no.7
/
pp.87-95
/
2012
In this paper, PTAS three-dimensional Steiner minimum tree connecting numerous input nodes rapidly in 3D space is proposed. Steiner minimum tree problem belongs to NP problem domain, and when properly devised heuristic introduces, it is generally superior to other algorithms as minimum spanning tree affiliated with P problem domain. But when the number of input nodes is very large, the problem requires excessive execution time. In this paper, a method using PTAS is proposed to solve the difficulty. In experiments for 70,000 input nodes in 3D space, the tree produced by the proposed 8 space partitioned PTAS method reduced 86.88% execution time, compared with the tree by naive 3D steiner minimum tree method, though increased 0.81% tree length. This affirms the proposed method can work well for applications that many nodes of three dimensions are need to connect swifty, enduring slight increase of tree length.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.