• Title/Summary/Keyword: 최대우도추정

Search Result 103, Processing Time 0.019 seconds

A Study on Maximum Likelihood Method for Multi Target Estimation (다중 목표물 추정을 위한 최대 우도 방법에 대한 연구)

  • Lee, Min-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • In spatial, desired target direction of arrival estimation is to find a incidental signal direction on receive antennas. In this paper, we were an estimation a desired target direction of arrival using maximum likelihood method. Direction of arrival estimation method estimated a desired target calculating the maximum likelihood sensitivity using singular value decomposition above threshold signals among receive signals in maximum likelihood method. Through simulation, we were analysis a performance to compare existing method and proposal method. In direction of arrival estimation, proposed method is effectivity to decrease processing time because it is not doing an eigen decomposition in direction of arrival estimation, and desired target correctly estimated. We showed that proposal method improve more target estimation than general method.

Comparison of Step-Wise and Exact Maximum Likelihood Estimations on Cell Probabilities of Contingency Table (단계별로 얻어진 이차원 분할표의 모수 추정을 위한 정확최대우도추정법과 단계별추출추정법의 비교)

  • Lee, Sang-Eun;Kang, Kee-Hoon;Jeung, Seok-O;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.67-77
    • /
    • 2010
  • In multinomial scheme with step-wise sampling, maximum likelihood estimates of multinomial probabilities are improved when some frequencies are merged. In this study, for cell probabilities in a I by J independent contingency tables, exact MLE and step-wise estimation methods are applied and the results are compared using MSE and Bias.

변량추출비 관리도에서 이상원인 발생 시점의 추정

  • Lee, Jae-Heon;Park, Chang-Sun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.85-90
    • /
    • 2003
  • 이 논문에서는 Samuel, Pignatiello와 Calvin(1998)이 제안한 ${\overline{X}}$ 관리도에서 이상원인 발생시점에 대한 최대우도추정량에 기초하여 변량표본크기(VSS) ${\overline{X}}$ 관리도를 수행하는 경우에 사용할 수 있는 최대우도추정량을 제안한다. 또한 제안된 최대우도추정량을 이용하여 이상원인 발생 시점에 대한 신뢰구간을 설정하였다.

  • PDF

희박다항분포확률에 대한 국소최대우도 추정량

  • Baek, Jang-Seon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.29-34
    • /
    • 2002
  • $p=(p_{}1,p_{2},{\cdots},p_{k})^{T}$의 확률벡터를 가진 다항분포로부터 관측된 칸 돗수(cell frequency) 벡터가 $N=(N_{1},N_{2},{\cdots},N_{k})^{T}$이며 ${\sum}{\limits}_{j=1}^{k}N_{j}=n$이라 하자. 총돗수 n이 칸의 총갯수 k에 비하여 상대적으로 매우 작을 때 이러한 이산형 자료를 희박다항분포자료(sparse multinomial data)라 한다. 이러한 희박다항분포자료의 칸들이 순서화 되어 있을 때 우리는 i번째 칸의 확률 $p_{i}$를 돗수 추정량 $N_{j}/n$ 들을 평활함으로써 추정 할 수 있다. Aerts, et al.(1997)과 Baek(1998) 등에 의해 제안된 국소최소제곱기준에 근거한 국소다항커널추정량은 희박점근일치성의 좋은 성질을 가짐에도 불구하고 확률추정지가 음수값을 가질 수 있는 단점을 내포하고 있다. 본 연구에서는 이러한 단점을 극복하기 위하여 국소최대우도 기준에 근거한 새로운 커널추정량을 제안하고, 그것의 점근적 성질을 연구하였다.

  • PDF

Maximum Trimmed Likelihood Estimator for Categorical Data Analysis (범주형 자료분석을 위한 최대절사우도추정)

  • Choi, Hyun-Jip
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.229-238
    • /
    • 2009
  • We propose a simple algorithm for obtaining MTL(maximum trimmed likelihood) estimates. The algorithm finds the subset to use to obtain the global maximum in the series of eliminating process which depends on the likelihood of cells in a contingency table. To evaluate the performance of the algorithm for MTL estimators, we conducted simulation studies. The results showed that the algorithm is very competitive in terms of computational burdens required to get the same or the similar results in comparison with the complete enumeration.

혼합모형의 구간추정을 위한 PROC MIXED의 활용

  • Park, Dong-Jun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.1-6
    • /
    • 2005
  • SAS의 PROC MIXED는 ANOVA 추정량보다 더 다양한 잔차최대우도추정법 또는 최대우도추정법으로 모수들을 추론할 수 있다. 혼합모형에 속하는 불균형중첩오차구조를 갖는 선형회귀모형에서 랜덤효과에 해당되는 그룹간의 분산과 고정효과에 해당되는 회귀계수들에 대한 신뢰구간을 구하기 위하여 대표본인 경우와 소표본인 경우에 대하여 PROC MIXED를 사용한다. 시뮬레이션을 실행한 결과, 대표본인 경우에는 모수들의 신뢰구간을 구하기 위하여 PROC MIXED를 활용할 수 있지만, 소표본인 경우에는 PROC MIXED를 사용할 경우, 그룹간 분산과 회귀계수 가운데 하나인 절편항에 대한 신뢰구간은 시뮬레이터된 신뢰계수가 명시한 신뢰계수를 지키지 못하는 것을 보인다.

  • PDF

The Comparison of Imputation Methods in Time Series Data with Missing Values (시계열자료에서 결측치 추정방법의 비교)

  • Lee, Sung-Duck;Choi, Jae-Hyuk;Kim, Duck-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.723-730
    • /
    • 2009
  • Missing values in time series can be treated as unknown parameters and estimated by maximum likelihood or as random variables and predicted by the expectation of the unknown values given the data. The purpose of this study is to impute missing values which are regarded as the maximum likelihood estimator and random variable in incomplete data and to compare with two methods using ARMA model. For illustration, the Mumps data reported from the national capital region monthly over the years 2001 ${\sim}$ 2006 are used, and results from two methods are compared with using SSF(Sum of square for forecasting error).

Low-Complexity Robust ML Signal Detection for Generalized Spatial Modulation (일반화 공간변조를 위한 저복잡도 강인 최대 우도 신호 검파)

  • Kim, Jeong-Han;Yoon, Tae-Seon;Oh, Se-Hoon;Lee, Kyungchun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.516-522
    • /
    • 2017
  • In this paper, we propose a maximum likelihood signal detection scheme for a generalized spatial modulation system that activates only a subset of transmit antennas among multiple antennas and transmits information through the indexes of active antennas as well as through the transmit symbols. The proposed maximum likelihood receiver extracts a set of candidate solutions based on their a posteriori probabilities to lower the computational load of the robust receiver under channel information errors. Then, the chosen candidate solutions are exploited to estimate the covariance matrix of effective noise. Simulation results show that the proposed maximum likelihood detection scheme achieves better error performance than a receiver that does not take into account the channel information errors. It is also seen that it reduces the computational complexity with the same bit error rate performance as the conventional robust maximum likelihood receiver.

Target Detection Performance in a Clutter Environment Based on the Generalized Likelihood Ratio Test (클러터 환경에서의 GLRT 기반 표적 탐지성능)

  • Suh, Jin-Bae;Chun, Joo-Hwan;Jung, Ji-Hyun;Kim, Jin-Uk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.365-372
    • /
    • 2019
  • We propose a method to estimate unknown parameters(e.g., target amplitude and clutter parameters) in the generalized likelihood ratio test(GLRT) using maximum likelihood estimation and the Newton-Raphson method. When detecting targets in a clutter environ- ment, it is important to establish a modular model of clutter similar to the actual environment. These correlated clutter models can be generated using spherically invariant random vectors. We obtain the GLRT of the generated clutter model and check its detection probability using estimated parameters.

A Missing Data Imputation by Combining K Nearest Neighbor with Maximum Likelihood Estimation for Numerical Software Project Data (K-NN과 최대 우도 추정법을 결합한 소프트웨어 프로젝트 수치 데이터용 결측값 대치법)

  • Lee, Dong-Ho;Yoon, Kyung-A;Bae, Doo-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2009
  • Missing data is one of the common problems in building analysis or prediction models using software project data. Missing imputation methods are known to be more effective missing data handling method than deleting methods in small software project data. While K nearest neighbor imputation is a proper missing imputation method in the software project data, it cannot use non-missing information of incomplete project instances. In this paper, we propose an approach to missing data imputation for numerical software project data by combining K nearest neighbor and maximum likelihood estimation; we also extend the average absolute error measure by normalization for accurate evaluation. Our approach overcomes the limitation of K nearest neighbor imputation and outperforms on our real data sets.