• Title/Summary/Keyword: 최대안정영역

Search Result 195, Processing Time 0.028 seconds

Effect of Antioxidants on the Thermostability of Red Pigment in Prickly Pear (선인장열매 적색색소의 열안정성에 대한 항산화제의 효과)

  • Kim, In-Hwan;Kim, Myung-Hee;Kim, Houng-Man;Kim, Young-Eun
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.1013-1016
    • /
    • 1995
  • The color stability of betacyanins and effects of antioxidants from Opuntia dillenii Haw were determined in the fruit juice at temperature up to $90^{\circ}C$. The absorption maxima of betacyanins occurred between 536 nm and 538 nm. When fruit juice was heated at $90^{\circ}C$ for various times, the red color gradually diminished and the absorption maxima slightly shifted toward uv region. The kinetic analysis of the data obtained indicated that the discoloration for betacyanins obeyed first order reaction pattern, when the thermal stability test was performed at $50{\sim}90^{\circ}C$. And the rate constant increased from $1.56{\times}10^{-3}/min\;to\;71.91{\times}10^{-3}/min$ with the half-life decreasing from 444.23 min to 9.64 min. The results also indicated that the thermal stability of pigment decreased with increasing temperature. The energy of activation was 10.94 kcal/mole for the pigment. N-propyl gallate, L-cysteine, and ascorbic acid were added to cactus fruit juice at concentrations of $0.01{\sim}0.3%$ at different temperatures. Npropyl gallate and L-cysteine had a little antioxidant effect on betacyanins stability at $50^{\circ}C\;and\;70^{\circ}C$, whereas ascorbic acid had a great antioxidant effect with the half-life value of 2 to 10 times to that of the control.

  • PDF

Experimental Study of Effect of CO2 Addition on Oxy-Fuel Combustion in Triple Concentric Multi-Jet Burner (다공 동축 버너를 이용한 순산소 연소에서 CO2 첨가가 화염에 미치는 영향에 관한 실험적 연구)

  • Kim, Seung-Hwan;Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.409-416
    • /
    • 2010
  • The use of oxy-fuel combustion and flue gas recirculation (FGR) for $CO_2$ reduction has been studied by many researchers. This study focused on the characteristics of oxy-fuel combustion and the effects of $CO_2$ addition from the point of view of oxygen feeding ratio (OFR) and the position of $CO_2$ addition in order to reproduce an FGR system with a triple concentric multi-jet burner. Oxy-fuel combustion was stable at all OFRs at a fuel flow-rate of 15 lpm, which corresponds to an equivalence ratio of 0.93; however, the structure and length of the flame varied at different OFRs. When $CO_2$ was added in oxy-fuel combustion, various stability modes such as stable, transient, quasistable, unstable, and blow-out were observed. The temperature in the combustion chamber decreased upon $CO_2$ addition in all conditions, and the maximum reduction in temperature was below 1800 K. $CO_2$ concentration with respect to height varied with the volume percent of $CO_2$ at the nozzle tip.

A Study on the Adsorption at Oil-Water Interface and the Emulsion Stabilizing Properties of Soy Protein Isolate (분리 대두단백질의 기름-물 계면흡착 과 유화안정성에 관한 연구)

  • Kim, Young-Sug;Cho, Hyung-Yong;Cho, Eun-Kyung;Lee, Shin-Young;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.468-474
    • /
    • 1986
  • The emulsifying properties of soy protein isolate were measured at various conditions, and the relationships between the emulsifying properties and solubility, viscosity, hydrophobicity, protein adsorption, the tension at water-oil interface were investigated. The emulsifying properties are minimum at the isoelectric point(pI), and the effect of pH parallels its effect on protein solubility. The emulsifying activity is increasing up to $50^{\circ}C$ and then is somewhat decreasing above that temperature, while the emulsion stability is continuously decreasing. Except for phosphates, the salts cause the decrease of the emulsifying properties. The hydrophobicity is increasing as the temperature increases and decreasing somewhat as pH gets lower. However, it is increasing substantially at pH below the pI. The maximum protein adsorption at the water-oil interface is 0.78, 0.47, and $0.33mg/m^2$ at pH 2, 7, and 4, respectively. The tension at water-oil interface is 19.76 dyne/cm in the absence of soy protein, whereas it is decreasing to 11.45-18.08 dyne/cm in the presence of the protein.

  • PDF

PSO-Based PID Controller for AVR Systems Concerned with Design Specification (설계사양을 고려한 AVR 시스템의 PSO 기반 PID 제어기)

  • Lee, Yun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.330-338
    • /
    • 2018
  • The proportional-integral-derivative(PID) controller has been widely used in the industry because of its robust performance and simple structure in a wide range of operating conditions. However, the AVR(Automatic Voltage Regulator) as a control system is not robust to variations of the power system parameters. Therefore, it is necessary to use PID controller to increase the stability and performance of the AVR system. In this paper, a novel design method for determining the optimal PID controller parameters of an AVR system using the particle swarm optimization(PSO) algorithm is presented. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. In order to assist estimating the performance of the proposed PSO-PID controller, a new performance criterion function is also defined. This evaluation function is intended to reflect when the maximum percentage overshoot, the settling time are given as design specifications. The ITAE evaluation function should impose a penalty if the design specifications are violated, so that the PSO algorithm satisfies the specifications when searching for the PID controller parameter. Finally, through the computer simulations, the proposed PSO-PID controller not only satisfies the given design specifications for the terminal voltage step response, but also shows better control performance than other similar recent studies.

Finite element analysis of peri-implant bone stresses induced by root contact of orthodontic microimplant (치근접촉이 마이크로 임플란트 인접골 응력에 미치는 영향에 대한 유한요소해석)

  • Yu, Won-Jae;Kim, Mi-Ryoung;Park, Hyo-Sang;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.41 no.1
    • /
    • pp.6-15
    • /
    • 2011
  • Objective: The aim of this study was to evaluate the biomechanical aspects of peri-implant bone upon root contact of orthodontic microimplant. Methods: Axisymmetric finite element modeling scheme was used to analyze the compressive strength of the orthodontic microimplant (Absoanchor SH1312-7, Dentos Inc., Daegu, Korea) placed into inter-radicular bone covered by 1 mm thick cortical bone, with its apical tip contacting adjacent root surface. A stepwise analysis technique was adopted to simulate the response of peri-implant bone. Areas of the bone that were subject to higher stresses than the maximum compressive strength (in case of cancellous bone) or threshold stress of 54.8MPa, which was assumed to impair the physiological remodeling of cortical bone, were removed from the FE mesh in a stepwise manner. For comparison, a control model was analyzed which simulated normal orthodontic force of 5 N at the head of the microimplant. Results: Stresses in cancellous bone were high enough to cause mechanical failure across its entire thickness. Stresses in cortical bone were more likely to cause resorptive bone remodeling than mechanical failure. The overloaded zone, initially located at the lower part of cortical plate, proliferated upward in a positive feedback mode, unaffected by stress redistribution, until the whole thickness was engaged. Conclusions: Stresses induced around a microimplant by root contact may lead to a irreversible loss of microimplant stability.

Design and Implementation of National Language Ability Test System using Korean Style Internet-Based Test added Middle-Server (미들서버방식 한국형 IBT를 이용한 국가언어능력평가 시스템의 설계 및 구현)

  • Chang, Young-Hyun;Park, Dea-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.185-192
    • /
    • 2011
  • The purpose of this paper is to propose the design and implementation of a korean style internet-based test system on the basis of efficiency and stability for middle server. The current assessment system has some unstable elements with regard to transmission procedure, cost, system load and stability. This paper proposes a series of activities for the performance improvement of korean style internet-based test system which finally produced various excellent results in the administration of expense control, human resources, and special operational affairs. The proposed system's technological factors using middle server have been tested through a basic simulation pilot system. Actual development procedure starts from the analysis required by improving the shortcomings of existing internet-based test systems. A efficiency comparison with existing system and newly developed system was made in the area of number of operators, abnormal processing, system maintenances. Korean style internet-based test system using middle server has shown great efficiency increased to the maximum of 2 times about the effectiveness of processing for various parts. The korean style internet-based test system using middle server have been given good evaluations with regard to the convenience of their use and the management system for operators and supervisors.

Generation of Femtosecond Pulses in a Passively Mode-Locked 100 MHz Cr4+:YAG Laser (수동 모드 잠금된 100 MHz Cr4+:YAG 레이저에서의 펨토초 펄스 발생)

  • Cho, Won-Bae;Rotermund Fabian;Kim, Jong-Doo;Jeon, Min-Yong;Suh, Ho-Suhng
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.535-541
    • /
    • 2005
  • We report on the development of a passively mode-locked near-infrared femtosecond laser with Cr:YAG crystal that operates near room temperature. The laser wavelength could easily be tuned by using only the internal prism pair over 110 nm from 1400 nm to 1510 nm in cw and over about 30 nm in mode-locked operation, respectively Maximum cw output powers of 810 mW were obtained with $1.5 \%$ output coupler for absorbed pump powers of 7.6 W. For compensation of the internal group velocity dispersion, an IR graded prism pair was used. The Cr:YAG laser delivered nearly Fourier-transform limited pulses with a pulse duration as short as 64 fs at 100 MHz repetition rate. In the mode-locked regime, the laser was operating at 1510 nm with a spectral bandwidth of 44 nm. In order to avoid unstable mode-locking and power instabilities, self-built tubes were inserted into the beam path in the resonator and purged with N2 gas. Finally, output powers of the Cr:YAG laser were optimized to 250 mW fer long time stable mode-locked operation.

Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis (열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.394-405
    • /
    • 2011
  • In this paper, we applied coupled non-isothermal, multiphase fluid flow and geomechanical numerical modeling using TOUGH-FLAC coupled analysis to study the complex thermodynamic and geomechanical performance of underground lined rock caverns (LRC) for compressed air energy storage (CAES). Mechanical stress in concrete linings as well as pressure and temperature within a storage cavern were examined during initial and long-term operation of the storage cavern for CAES. Our geomechanical analysis showed that effective stresses could decrease due to air penetration pressure, and tangential tensile stress could develop in the linings as a result of the air pressure exerted on the inner surface of the lining, which would result in tensile fracturing. According to the simulation in which the tensile tangential stresses resulted in radial cracks, increment of linings' permeability and air leakage though the linings, tensile fracturing occurred at the top and at the side wall of the cavern, and the permeability could increase to $5.0{\times}10^{-13}m^2$ from initially prescribed $10{\times}10^{-20}m^2$. However, this air leakage was minor (about 0.02% of the daily air injection rate) and did not significantly impact the overall storage pressure that was kept constant thanks to sufficiently air tight surrounding rocks, which supports the validity of the concrete-lined underground caverns for CAES.

Extraction and Characteristics of Purple Sweet Potato Pigment (자색고구마 색소의 추출과 특성)

  • Kim, Seon-Jae;Rhim, Jong-Whan;Lee, Lan-Sook;Lee, Joon-Seol
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.345-351
    • /
    • 1996
  • Studies on extraction and color characteristics of purple sweet potato (PSP) pigment were performed to provide the basic information for the utilization of PSP as a new source of natural food colorant. PSP pigment was extracted well with the polar solvents such as distilled water, ethanol, and methanol. but hardly extracted with the non-polar solvents. Among the tested solvents, 20% ethanol solution containing 0.1% citric acid was found to be the most efficient for extraction of the pigment from PSP. PSP contained high amount of pigment not only in the epidermis but also in the flesh of the potato. The PSP pigment was heat stable even under pretreatments such as autoclaving and blanching of the potato before extraction. The optimum temperature of the extraction for the PSP Pigment was decided to be $30^{\circ}C$ by considering the stability and the rate of extraction. The pigment was markedly influenced by the change of pH. The color of the pigment solution was red at the pH range of $1.0{\sim}3.0$, became blue at $7.0{\sim}8.0$, then turned green at $9.0{\sim}10.0$. A characteristic batho-chromic shift of the pigment solution was observed as the pH of the solution increased.

  • PDF

Ultrasonic relaxation associated with the complex formation of benzoic acid derivative and β-cyclodextrin (벤조산 유도체와 베타 사이클로덱스트린의 복합체 형성반응에 의한 초음파 완화)

  • Park, Shin;Bae, Jongrim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.387-393
    • /
    • 2017
  • The dynamic interactions between benzoic acid derivative ($pH{\approx}7.0$)(guest) and ${\beta}$-cyclodextrin (${\beta}$-CD)(host) were investigated in an aqueous solutions in terms of ultrasonic absorption in the frequency range 0.2 MHz ~ 50 MHz with emphasis on the low-frequency range below 1 MHz at $25^{\circ}C$. We show that the interaction of ${\beta}$-CD and benzoic acid derivative complies with a typical spectrum of a single relaxation process around a few MHz. The ultrasonic relaxation observed in these solutions was due to a perturbation of a chemical equilibrium related to a reaction of an inclusion complex formed by the host and guest. The rate constant ($k_b=7.48{\times}10^6M^{-1}s^{-1}$) and equilibrium constant ($K=68.6M^{-1}$) were determined from the concentration dependences of benzoic acid on the relaxation frequency. The standard volume change (${\Delta}V=10.6{\times}10^{-6}m^3mol^{-1}$) of the reaction was also computed from the maximum absorption per wavelength. It was found that the hydrophobicity of guest molecules played an important role in the formation of the inclusion complex.