• Title/Summary/Keyword: 최대등가응력

Search Result 90, Processing Time 0.031 seconds

Optimum Design of Teeth Shapes of Rotating Serration and Spline-type Torque Converter Parts Operating in a High Temperature Fluids (고온에서 맞물려 회전하는 토크컨버터 부품간 열 및 토크를 고려한 치형상의 최적설계)

  • Lee, Dong-uk;Kim, Cheol;Kim, Jungjun;Shin, Sooncheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1125-1130
    • /
    • 2017
  • The tooth shapes of serration-type and spline-type reactors are optimized using finite element methods to improve the working life of the part and to lower the stress concentration during rotation resulting from contact with the outer race for a reactor operating with $170^{\circ}C$ transmission oil. The results of thermal expansion analyses between an Al reactor and the steel outer race indicate that, before optimization, the gap between the two parts increases further as the serration-type reactor expands by 0.1 mm and the spline-type one strains by 0.08 mm. Because of shape optimization, a trapezoidal shape is obtained from the initial triangular serration and the rectangular spline of the two reactors. The maximum von Mises stress of the serration-type convertor decreased by 24.5 %, and by 9.3 % for the spline-type convertor. In addition, there is a 13 % reduction in the axial thickness, as compared to the initially designed model.

외부하중을 고려한 추진기관 연소관의 구조 해석

  • 구송회;이방업;조원만;이환규
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.159-167
    • /
    • 1995
  • 본 연구는 유도탄 비행시험시에 연소관의 스커트와 날개 장착용 브라켓에 작용하는 공력하중과 연소관에 내압이 동시에 작용하는 추진기관에 대하여 구조 해석하였다. 추진기관의 스커트부 및 브라켓부의 공력하중은 3차원적으로 작용하기 때문에 대칭성을 이용한 $180^{\circ}C$3차원 구조 해석을 수행하여 비행시험, 수압시험, 지상시험 모드에 대하여 응력 수준을 비교하였다. 해석 결과 3가지 모드의 최대 등가응력은 거의 같으며, 비행시험시 공력하중이 앞마개부에 미치는 영향은 최대 등 가응력의 6%이내로 상당히 작았다. 수압시험 모드와 지상시험 모드의 실험치와 해석치를 비교한 결과 정확한 해석을 위해서는 점화기를 모델링과 점화기와 연소관, 브라켓과 연소관에 접촉요소의 적용, 3차원 비선형 해석등 보다 상세한 해석이 필요함을 알 수 있었다.

  • PDF

Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis (임플란트 지대주나사의 조임회전력이 연결부 안정성에 미치는 영향에 관한 3차원 유한요소해석 연구)

  • Eom, Tae-Gwan;Suh, Seung-Woo;Jeon, Gyeo-Rok;Shin, Jung-Wook;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.125-135
    • /
    • 2009
  • Statement of problem: Loosening or fracture of the abutment screw is one of the common problems related to the dental implant. Generally, in order to make the screw joint stable, the preload generated by tightening torque needs to be increased within the elastic limit of the screw. However, additional tensile forces can produce the plastic deformation of abutment screw when functional loads are superimposed on preload stresses, and they can elicit loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum tightening torque that maximizes a fatigue life and simultaneously offer a reasonable degree of protection against loosening. Purpose: The purpose of this study was to present the influence of tightening torque on the implant-abutment screw joint stability with the 3 dimensional finite element analysis. Material and methods: In this study, the finite element model of the implant system with external butt joint connection was designed and verified by comparison with additional theoretical and experimental results. Four different amount of tightening torques(10, 20, 30 and 40 Ncm) and the external loading(250 N, $30^{\circ}$) were applied to the model, and the equivalent stress distributions and the gap distances were calculated according to each tightening torque and the result was analyzed. Results: Within the limitation of this study, the following results were drawn; 1) There was the proportional relation between the tightening torque and the preload. 2) In case of applying only the tightening torque, the maximum stress was found at the screw neck. 3) The maximum stress was also shown at the screw neck under the external loading condition. However in case of applying 10 Ncm tightening torque, it was found at the undersurface of the screw head. 4) The joint opening was observed under the external loading in case of applying 10 Ncm and 20 Ncm of tightening torque. 5) When the tightening torque was applied at 40 Ncm, under the external loading the maximum stress exceeded the allowable stress value of the titanium alloy. Conclusion: Implant abutment screw must have a proper tightening torque that will be able to maintain joint stability of fixture and abutment.

A Convergent Study on the Structural Analysis of Automotive Support Beam (자동차 서포트빔의 구조해석에 대한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.169-173
    • /
    • 2020
  • The structural analysis was performed at this study when the axle was loaded by using a total of three automotive support beam models, models A, B and C. Comparing with three models A, B, and C, the equivalent stress is considered to be good for its durability because model C is less than the yield stress of the material. The maximum equivalent stresses happening at models A and B are 1.8 times and 2.5 times higher than the yield stress, respectively, indicating that the material is fractured. So, it does not seem to be efficient as a support beam. Model C can be applied efficiently to the improvement design of axle support beams in terms of durability compared to models A and B. The strength of automotive support beam can be evaluated by applying this research result to the automotive part. And it is seen that this study is adequate at the efficient design and aesthetic convergence practically.

Basic Study on Impact Analysis of Automobile (자동차 충돌 해석에 관한 기초 연구)

  • Cho, Jae-Ung;Min, Byung-Sang;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.64-70
    • /
    • 2009
  • This study is to analyze the impact of automotive body with computer simulation. The total deformation, equivalent strain and strain and principal stress are analyzed respectively in case of front, rear and side impacts. The maximum total deformation of side impact is more than 6 times as large as that of rear impact. The maximum equivalent strain or stress of side impact is more than 4 times as large as that of rear impact. These deformation, strain and stress of front impact are a little more than those of rear impact. The maximum principal stress of side impact is more than 4.5 times as large as that of rear impact. This stress of front impact is a little more than that of rear impact.

  • PDF

Thermo-Mechanical Stress Analysis of Power Generation Turbine Blades (발전용 터빈 블레이드의 열기계 응력 해석)

  • Kim, Jong-Un;Lee, Soo-Yong;Park, Jung-Sun;Lee, An-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.84-91
    • /
    • 2002
  • Temperature distribution in the GTD111 turbine blade used in power plaints is calculated by heat transfer analysis. Linear stress analysis of the turbine blade is also carried out under thermal loads and centrifugal forces. The numerical results of steady state heat transfer analysis slow that high temperature distribution occurs at the leading edge and tip section of the blade. The thermal stress result indicates that the equivalent stress at the tip of the pressure surface is higher than other sections of the blade. Maximum centrifugal stresses without the thermal effect occurs at the front of the fir tree. From the thermal-centrifugal stress analysis, maximum equivalent stress occurs at the fir tree. Stresses applied by the thermal loads and centrifugal forces are less than the yield stress. The GTD111 turbine blade is safe to be used in the power plants.

A Concrete Model for Analysis of Concrete Structure with Confinement (구속응력을 받는 콘크리트 구조물 해석을 위한 콘크리트 구성모델)

  • Kwon, Min-Ho;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.433-442
    • /
    • 2003
  • This paper presents a hypoplastic model for three-dimensional analysis of concrete structures under monotonic, cyclic, proportional and non-proportional loading. The constitutive model is based on the concept of equivalent uniaxial strains that allows the assumed orthotropic model to be described via three equivalent uniaxial stress-strain curves. The characteristics of these curves are obtained from the ultimate strength surface in the principal stress space based on the Willam-Warnke curve. A cap model is added to consider loading along or near the hydrostatic axis. The equivalent uniaxial curve is based on the Popovics and Saenz models. The post-peak behavior is adjusted to account for the effects of confinement and to describe the change in response from brittle to ductile as the lateral confinement increases. Correlation studies with available experimental tests are presented to demonstrate the model performance. Tests with monotonic loading on specimens under constant lateral confinement are considered first, followed by biaxial and triaxial tests with cyclic loads. The triaxial test example considers non-proportional loading.

Dynamic Fracture Analysis at Strip with Composite Materials (복합재로 된 판재에서의 동적 파괴 해석)

  • Cho Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.265-270
    • /
    • 2006
  • When the dynamic crack propagates along the boundary at the strip with composite materials and tears apart it, the equivalent stress and strain, and the traction stress are investigated near its boundary. There are the maximum equivalent stress and plastic strain at the very seperated part and the maximum displacement at the bent part of the end of strip. The traction stress becomes higher as the separation distance becomes more. Its maximum value becomes 75 MPa as this distance becomes 0.015 mm. As this distance becomes more than 0.015 mm, this stress becomes lower. As this distance becomes more than 0.13 mm, the value of this stress becomes 0 constantly. This study aims at doing the basic study to provide the data necessary for the precise analysis of fracture intensity, the safety design and the development of advanced materials.

  • PDF

Stress Analysis on a Structure of Solar Tracker Subjected to Wind Load (풍하중을 받는 태양광 추적 구조물의 응력해석)

  • Kim, Yong-Woo;Kim, Won-Bong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.747-754
    • /
    • 2012
  • A solar power generator is usually installed outdoors and it is exposed to extreme environments such as snow weight and wind loading. The solar tracker structure should be designed to have sufficient stiffness and strength against such loads. In this paper, simulations are performed by varying the parameters such as wind directions, wind speeds and the pose of the solar panel to evaluate the effects of extreme wind on solar tracker. As the effects of wind load, maximum displacement and maximum equivalent stress in the solar tracker are calculated. Finite element stress analysis is carried out by using the pressure distribution that is obtained by prior wind load analysis due to the flow around the solar tracker. The stress analysis of solar tracker to check and/or improve structural robustness provides some useful instructions for structural design or revision of solar tracker.

An Experimental Study for the Liquefaction Resistance Strength of Saturated Sand Using Real Earthquake Loading (실지진하중을 이용한 포화사질토의 액상화 저항강도에 관한 실험적 연구)

  • 심재욱;박근보;최재순;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.329-337
    • /
    • 2002
  • Based on the equivalent uniform stress concept presented by Seed and Idriss, sinusoidal cyclic loads which simplified the earthquake loads have been applied in evaluating the liquefaction resistance strength experimentally. However, the liquefaction resistance strength of soil based on the equivalent uniform stress concept can not exactly reflect the dynamic characteristics of the irregular earthquake motion. In this study, the criterion of the liquefaction resistance strength was determined by applying real earthquake loading to the cyclic triaxial test. From the test results, relationships between liquefaction behaviors of saturated sand and earthquake characteristics such as magnitude or time-duration were determined. Magnitude scaling factors to determine the soil liquefaction resistance strength in seismic design were also proposed.