• 제목/요약/키워드: 최근접이웃법

검색결과 31건 처리시간 0.023초

가중 적응 최근접 이웃을 이용한 결측치 대치 (On the use of weighted adaptive nearest neighbors for missing value imputation)

  • 염윤진;김동재
    • 응용통계연구
    • /
    • 제31권4호
    • /
    • pp.507-516
    • /
    • 2018
  • 결측치를 대치하는 여러가지 단일대치법 중에서 다변량 정규성 등의 모수적 모형이 만족되지 않을 때에도 강건성(robustness)을 지니는 k-최근접 이웃 대치법(k-nearest neighbors; KNN)이 널리 활용된다. KNN대치법에서 자료의 국소적 특징을 반영한 적응 최근접 이웃(adaptive nearest neighbors; ANN) 대치법과 k개의 최근접 이웃들 중 극단값이나 이상값이 있는 경우 이들의 영향에 덜 민감한 가중 k-최근접 이웃(weighted KNN; WKNN) 대치법의 장점을 결합한 가중 적응 최근접 이웃(weighted ANN; WANN) 대치법을 제안하였다. 또한 모의실험을 통하여 기존의 방법들과 제안한 방법을 비교하였다.

순차 적응 최근접 이웃을 활용한 결측값 대치법 (On the Use of Sequential Adaptive Nearest Neighbors for Missing Value Imputation)

  • 박소현;방성완;전명식
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1249-1257
    • /
    • 2011
  • 비모수적 결측치 대치법인 k-최근접 이웃(k-Nearest Neighbors; KNN) 대치법을 개선한 적응 최근접 이웃(Adaptive Nearest Neighbor; ANN) 대치법과 순차 k-최근접 이웃(Sequential k-Nearest Neighbor; SKNN) 대치법의 장점들을 결합한 순차 적응 최근접 이웃(Sequential Adaptive Nearest Neighbor; SANN) 대치법을 제안하고자 한다. 이 방법은 ANN 대치법의 장점인 자료의 국소적 특징을 반영할 뿐 아니라, SKNN 대치법과 같이 결측값 대치가 이루어진 개체를 다음 결측값을 대치할 때 사용함으로써 효율성에 개선이 있을 것으로 기대한다.

바이올린과 첼로 연주 데이터를 이용한 분류 알고리즘의 성능 비교 (Performance Comparison of Classification Algorithms in Music Recognition using Violin and Cello Sound Files)

  • 김재천;곽경섭
    • 한국통신학회논문지
    • /
    • 제30권5C호
    • /
    • pp.305-312
    • /
    • 2005
  • 음악인식에 주로 사용되는 세 가지 알고리즘의 성능을 비교하였다. 다양한 분류알고리즘을 소개하고 그 중 베이지안법, 최근접이웃법과 k-최근접이웃법을 이용하여 악기를 분류하였다. 악기 샘플파일에서 영교차율, 평균, 분산, 평균피크레벨의 4가지 특성값을 추출하여 분류시스템의 데이터로 사용하였다. 사용된 악기 샘플은 바이올린, 바로크 바이올린, 바로크 첼로이다. 실험결과 최근접이웃 알고리즘이 악기 분류에 있어서 가장 좋은 성능을 보여 주었다. 최근접이웃 알고리즘은 단순하면서도 빠른 계산결과를 보여 악기 분류에 적절한 알고리즘으로 판단되었다.

신재생 에너지 생산량 예측 알고리즘

  • 김지호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.389-392
    • /
    • 2012
  • 에너지관리 지원 서비스는 공장 내에서 일어나는 전력발전 및 전력할당을 데어터 분석 기법 등을 이용하여 효과적으로 관리하는 것을 목적으로 한다. 특히 그 중에서도 태양광, 풍력 등 친환경 에너지를 이용한 에너지관리 시스템은 비용절감 뿐만 아니라 환경보호 측면에서도 중요한 문제라 할 수 있다. 이들 친환경 에너지를 제대로 이용하기 위해서는 그들의 발전량을 정확히 예측할 필요가 있지만 현재의 시스템에는 가장 기본적인 예측법인 최근접 이웃법을 사용하고 있다. 최근접 이웃법의 경우 노이즈와 아웃라이어에 민감하다는 단점이 있기 때문에 이들 상황에 대처할 수 있는 보다 정교한 예측법이 필요하다.

K-NN과 최대 우도 추정법을 결합한 소프트웨어 프로젝트 수치 데이터용 결측값 대치법 (A Missing Data Imputation by Combining K Nearest Neighbor with Maximum Likelihood Estimation for Numerical Software Project Data)

  • 이동호;윤경아;배두환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권4호
    • /
    • pp.273-282
    • /
    • 2009
  • 소프트웨어 프로젝트 데이터를 이용한 각종 분석 예측 모델 생성시 직면하는 문제 중 하나는 데이터에 포함된 결측값이며 이에 대한 효과적인 방안은 결측값 대치 법이다. 대표적인 결측값 대치법인 K 최근접 이웃 대치법은 대치과정에서 결측값을 포함하는 인스턴스의 관측정보를 활용하지 못한다는 단점이 있다. 본 연구에서는 이러한 단점을 극복하기 위해 K 최근접 이웃 대치법과 최대 우도 추정법을 결합한 새로운 소프트웨어 프로젝트 수치 데이터용 결측값 대치법을 제안한다. 또한 결측값 대치법의 정확도를 비교하기 위한 새로운 측도를 함께 제안한다.

Weighted k-Nearest Neighbors를 이용한 결측치 대치 (On the Use of Weighted k-Nearest Neighbors for Missing Value Imputation)

  • 임찬희;김동재
    • 응용통계연구
    • /
    • 제28권1호
    • /
    • pp.23-31
    • /
    • 2015
  • 통계적 분석을 할 때 결측치가 발생하는 것은 매우 통상적이다. 이러한 결측치를 대치하는 방법은 여러가지가 있으며, 기존에 사용되는 단일대치법으로 k-nearest neighbor(KNN) 방법이 있다. 하지만 KNN 방법은 k개의 최근접 이웃들 중 극단치나 이상치가 있을 때 편의를 일으킬 수 있다. 본 논문에서는 KNN 방법의 단점을 보완하여 가중 k-최근접이웃(Weighted k-Nearest Neighbors; WKNN) 대치법을 제안하였다. 또한 모의실험을 통해서 기존의 방법과 비교하였다.

시간경로 유전자 발현자료에서 패턴일치지수와 적응 최근접 이웃을 활용한 결측값 대치법 (Missing values imputation for time course gene expression data using the pattern consistency index adaptive nearest neighbors)

  • 신혜서;김동재
    • 응용통계연구
    • /
    • 제33권3호
    • /
    • pp.269-280
    • /
    • 2020
  • 시간경로 유전자 발현 자료는 마이크로어레이 실험을 시간에 따라 관측한 대용량의 자료로 유전자 발현 수준을 동시에 파악할 수 있다. 하지만 실험 과정이 복잡하여 다양한 원인들에 의해 결측값이 자주 발생한다. 본 논문에서는 시간경로 유전자 발현 자료에 대한 결측값을 추정하는 방법으로 패턴 적응 최근접 이웃(pattern consistency index adaptive nearest neighbors; PANN) 방법을 제안하였다. 이 방법은 국소적 특징을 반영하는 적응 최근접 이웃(adaptive nearest neighbors; ANN) 방법과 관측 시점간 유전자 발현의 일치 정도를 고려하는 패턴일치지수를 결합시킨 것이다. 제안한 PANN 방법의 효능을 평가하기 위하여 두 가지의 실제 시간경로 자료들을 사용하여 몬테카를로 모의실험(Monte Carlo simulation study)을 시행하였다.

K-최근접 이웃 알고리즘을 적용한 펌프와 모터의 상태 진단 (Status Diagnosis of Pump and Motor Applying K-Nearest Neighbors)

  • 김남진;배영철
    • 한국전자통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.1249-1256
    • /
    • 2018
  • 최근 인공지능에 대한 연구가 진단과 예측 분야에서 활발하게 진행되고 있다. 본 논문에서는 산업 현장에 설치되어 있는 모터와 펌프에서 발생하는 진동, 회전 수, 전류 데이터 취득한다. 취득한 데이터로부터 k-최근접 이웃(k-nearest neighbors) 알고리즘을 적용하여 이들 데이터를 학습하고, 학습한 데이터를 이용하여 펌프와 모터의 이상상태와 건전 상태를 판단하는 상태진단법을 제안한다. 제안 결과 정상상태와 이상상태가 잘 구분됨을 확인할 수 있었다.

정지영상 확대시 보간법에 관한 연구 (A Study on Interpolation for Enlarged Still Image)

  • 강길봉;양영수;김장형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 춘계종합학술대회
    • /
    • pp.643-648
    • /
    • 2001
  • 본 논문은 정지영상을 확대했을 때 높은 해상도_를 얻기 위한 영상 처리 기술로서 기존의 보간법 이외에 새로운 보간법을 제안했다. 영상 처리에서 주로 사용되는 보간법인 최근접 이웃화소 보간법과 양선형 보간법인 두 보간법을 조합하여 장점을 살리고 단점을 보완하는 알고리즘으로서 향상된 화질의 확대 영상을 얼을 수 있는 혼합형 보간법에 대하여 연구를 하였다.

  • PDF

Machine Learning Methods to Predict Vehicle Fuel Consumption

  • Ko, Kwangho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.13-20
    • /
    • 2022
  • 본 연구에서는 주행 차량의 실시간 연료소모량을 예측할 수 있는 머신러닝 기법을 제안하고 그 특성을 분석하였다. 머신러닝 학습을 위해 실도로 주행을 실시하여 주행 속도, 가속도, 도로 구배와 함께 연료소모량을 측정하였다. 특성 데이터로 속도, 가속도, 도로구배를, 타깃으로 연료소모량을 지정하여 다양한 머신러닝 모델을 학습시켰다. 회귀법에 해당하는 K-최근접이웃회귀 및 선형회귀와 함께, 분류법에 해당하는 K-최근접이웃분류, 로지스틱회귀, 결정트리, 랜덤포레스트, 그래디언부스팅을 사용하였다. 실시간 연료소모량에 대한 예측 정확도는 0.5 ~ 0.6 수준으로 전반적으로 낮았고, 회귀법의 경우 분류법보다 정확도가 떨어졌다. 총연료소모량에 대한 예측 오차는 0.2 ~ 2.0% 수준으로 상당히 정확했고, 분류법보다 회귀법의 오차가 더 낮았다. 이는 예측 정확도의 기준으로 결정계수(R2)를 사용했기 때문인데, 이 값이 작을수록 타깃의 평균 부근에 예측치가 좁게 분포하기 때문이다. 따라서 실시간 연료소모량 예측에는 분류법이, 총연료소모량 예측에는 회귀법이 적합하다고 할 수 있다.