• Title/Summary/Keyword: 최고기온

Search Result 406, Processing Time 0.031 seconds

Assessment of future climate change impact on groundwater level behavior in Geum river basin using SWAT (SWAT을 이용한 미래기후변화에 따른 금강유역의 지하수위 거동 평가)

  • Lee, Ji Wan;Jung, Chung Gil;Kim, Da Rae;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.3
    • /
    • pp.247-261
    • /
    • 2018
  • The purpose of this study is to evaluate the groundwater level behavior of Geum river basin ($9,645.5km^2$) under future climate change scenario projection periods (2020s: 2010~2039, 2050s: 2040~2069, 2080s: 2070~2099) using SWAT (Soil and Water Assessment Tool). Before future evaluation, the SWAT was calibrated and validated using 11 years (2005~2015) daily multi-purpose dam inflow at 2 locations (DCD, YDD), ground water level data at 5 locations (JSJS, OCCS, BEMR, CASS, BYBY), and three years (2012~2015) daily multi-function weir inflow at 3 locations (SJW, GJW, BJW). For the two dam inflow and dam storage, the Nash-Sutcliffe efficiency (NSE) was 0.57~0.67 and 0.87~0.94, and the coefficient of determination ($R^2$) was 0.69~0.73 and 0.63~0.73 respectively. For the three weir inflow and storage, the NSE was 0.68~0.70 and 0.94~0.99, and the $R^2$ was 0.83~0.86 and 0.48~0.61 respectively. The average $R^2$ for groundwater level was from 0.53 to 0.61. Under the future temperature increase of $4.3^{\circ}C$ and precipitation increase of 6.9% in 2080s (2070~2099) based on the historical periods (1976~2005) from HadGEM3-RA RCP 8.5 scenario, the future groundwater level shows decrease of -13.0 cm, -5.0 cm, -9.0 cm at 3 upstream locations (JSJS, OCCS, BEMR) and increase of +3.0 cm, +1.0 cm at 2 downstream locations (CASS, BYBY) respectively. The future groundwater level was directly affected by the groundwater recharge by the future seasonal spatial variation of rainfall in the watershed.

Palatability and Physicochemical Properties in 2001 Yield Increased by 10% than Normal Level in 2000 (쌀 수량이 평년수준인 2000년 대비 10% 증가한 2001년의 식미 및 이화학특성 비교)

  • Lee, Jeom-Sig;Lee, Jeong-Heui;Yoon, Mi-Ra;Kwak, Jieun;Mo, Young Jun;Chun, Areum;Kim, Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.292-300
    • /
    • 2013
  • In this study, we examine the palatability and physicochemical properties of rice in the year, when there was 10% increase in yield compared to normal year due to daily temperature range and sunshine hours. The results of the analysis of rice yield over the last 20 years (1993-2012) showed 10% difference between the yield in 2000, which was normal, and that in 2001. With regard to the crop weather condition during the ripening period in 2001 compared to 2000, the daily range and sunshine hours were higher, but the mean temperature was similar. The rice yield in 2001 was 9.8% higher than that in 2000 due to the increased number of spikelets per panicles and ratio of ripened grain. In terms of chemical traits, protein, Mg, and K contents decreased in 2001 compared to 2000, but amylose content increased. Trough and final viscosity assessed with a Rapid Visco Analyser were significantly higher in 2001 than 2000. The quality of cooked rice was measured through the Toyo Mido Meter Glossiness Value (TGV) instead of a palatability score because a sensory test produces relative comparison values rather than absolute values. The correlation coefficients between the sensory evaluation parameters and the TGV in several rice materials harvested in two years showed a highly significant positive correlation ($r=0.81^{**}-0.89^{**}$, n=27-47). TGV was also significantly higher in 2001 than in 2000. The results suggested that the palatability of cooked rice was good in 2001 with about 10% increase in rice yield compared to normal year in 2000 due to daily temperature range and sunshine hours.

Primary Production and Litter Decomposition of Macrophytes in the Sihwa Constructed Wetlands (시화호 인공습지에서 수생식물의 유기물 생산과 낙엽 분해)

  • Choi, Kwangsoon;Kim, Ho Joon;Kim, Dong Sub;Cho, Kang Hyun
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.347-356
    • /
    • 2013
  • To provide the information for the wetland management considering the water treatment ability of macrophytes, the growth characteristics and primary production by reed (Phragmites australis) and cattail (Typha angustifolia), and the decomposition rate of organic matter produced were investigated in two sub-wetlands (Banweol and Donhwa wetlands) of the Sihwa Constructed Wetland (CW) with different chemistry of inflows. The shoot height of P. australis and Typha angustifolia began to increase in March, and reached its peaks in July and August (340cm and 320cm, respectively). The shoot density of P. australis ranging $100{\sim}170EA/m^2$ was higher than that of T. angustifolia (max. $78EA/m^2$). Standing biomass of P. australis ranged from $1,350{\sim}1,980gDM/m^2$, with maximal biomass in Banwol Upper Wetland. And it was larger in upper wetlands than lower wetlands. On the other hand standing biomass of T. angustifolia ($1,940gDM/m^2$) was similar to that of P. australis in Banwol Upper Wetland. Primary productivity of P. australis was in the order of Banwol Upper Wetland ($2,050gDM/m^2/yr$) > Donghwa Lower Wetland ($1,840gDM/m^2/yr$) > Banwol Lowerr Wetland ($1,570gDM/m^2/yr$) ${\fallingdotseq}$ Donghwa Lower Wetland ($1,540gDM/m^2/yr$), and that of T. angustifolia ($2,210gDM/m^2/yr$) was higher than P. australis. Annual production of organic matter produced by P. australis and T. angustifolia was 845 ton DM/yr (423 ton C/yr), and about 90% was comprised of that by P. australis. From the litter decomposition rate (k) (P. australis: leaf 0.0062/day, stem 0.0018/day; T. angustifolia: leaf 0.0031/day, stem 0.0018/day), leaf was rapid degraded compare to stem in both P. australis and T. angustifolia. The litter decomposition rate of leaf was two times rapid P. australis than T. angustifolia, whereas that of stem was same in both. Annual litter decomposition amount of P. australis than T. angustifolia was 285 ton C/yr(67.3% of organic matter produced by macrophytes), indicating that 32.7% of organic matter produced by macrophytes is accumulated in the Sihwa CW.

Modeling the Effect of a Climate Extreme on Maize Production in the USA and Its Related Effects on Food Security in the Developing World (미국 Corn Belt 폭염이 개발도상국의 식량안보에 미치는 영향 평가)

  • Chung, Uran
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.1-24
    • /
    • 2014
  • This study uses geo-spatial crop modeling to quantify the biophysical impact of weather extremes. More specifically, the study analyzes the weather extreme which affected maize production in the USA in 2012; it also estimates the effect of a similar weather extreme in 2050, using future climate scenarios. The secondary impact of the weather extreme on food security in the developing world is also assessed using trend analysis. Many studies have reported on the significant reduction in maize production in the USA due to the extreme weather event (combined heat wave and drought) that occurred in 2012. However, most of these studies focused on yield and did not assess the potential effect of weather extremes on food prices and security. The overall goal of this study was to use geo-spatial crop modeling and trend analysis to quantify the impact of weather extremes on both yield and, followed food security in the developing world. We used historical weather data for severe extreme events that have occurred in the USA. The data were obtained from the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). In addition we used five climate scenarios: the baseline climate which is typical of the late 20th century (2000s) and four future climate scenarios which involve a combination of two emission scenarios (A1B and B1) and two global circulation models (CSIRO-Mk3.0 and MIROC 3.2). DSSAT 4.5 was combined with GRASS GIS for geo-spatial crop modeling. Simulated maize grain yield across all affected regions in the USA indicates that average grain yield across the USA Corn Belt would decrease by 29% when the weather extremes occur using the baseline climate. If the weather extreme were to occur under the A1B emission scenario in the 2050s, average grain yields would decrease by 38% and 57%, under the CSIRO-Mk3.0 and MIROC 3.2 global climate models, respectively. The weather extremes that occurred in the USA in 2012 resulted in a sharp increase in the world maize price. In addition, it likely played a role in the reduction in world maize consumption and trade in 2012/13, compared to 2011/12. The most vulnerable countries to the weather extremes are poor countries with high maize import dependency ratios including those countries in the Caribbean, northern Africa and western Asia. Other vulnerable countries include low-income countries with low import dependency ratios but which cannot afford highly-priced maize. The study also highlighted the pathways through which a weather extreme would affect food security, were it to occur in 2050 under climate change. Some of the policies which could help vulnerable countries counter the negative effects of weather extremes consist of social protection and safety net programs. Medium- to long-term adaptation strategies include increasing world food reserves to a level where they can be used to cover the production losses brought by weather extremes.

  • PDF

Cultivation Demonstration of Paprika (Capsicum annuum L.) Cultivars Using the Large Single-span Plastic Greenhouse to Overcome High Temperature in South Korea (고온기 대형 단동하우스를 이용한 파프리카 품종별 재배실증)

  • Yeo, Kyung-Hwan;Park, Seok Ho;Yu, In Ho;Lee, Hee Ju;Wi, Seung Hwan;Cho, Myeong Cheoul;Lee, Woo Moon;Huh, Yun Chan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.429-440
    • /
    • 2021
  • During the growing period, the integrated solar radiation inside the greenhouse was 12.7MJ·m-2d-1, and which was 90% of the average daily global radiation outside the greenhouse, 14.1MJ·m-2d-1. The 24-hour average temperature inside the greenhouse from July to August, which has the highest temperature of the year, was 3.04℃ lower than the outside temperature, and 4.07℃ lower after the rainy season. Before the operation of fog cooling system, the average daily RH (%) was lowered to a minimum of 40% (20% for daytime), making it inappropriate for paprika cultivation, but after the operation of fog system, the daily RH during the daytime increased to 70 to 85%. The average humidity deficit increased to a maximum of 12.7g/m3 before fog supply, but decreased to 3.7g/m3 between July and August after fog supply, and increased again after October. The daytime residual CO2 concentration inside the greenhouse was 707 ppm on average during the whole growing period. The marketable yield of paprika harvested from July 27th to November 23rd, 2020 was higher in 'DSP-7054' and 'Allrounder' with 14,255kg/10a and 14,161kg/10a, respectively, followed by 'K-Gloria orange', 'Volante' and 'Nagono'. There were significant differences between paprika cultivars in fruit length, fruit diameter, soluble solids (°Brix), and flash thickness (mm) of paprika produced in summer season at large single-span plastic greenhouse. The soluble solids content was higher in the orange cultivars 'DSP-7054' and 'Naarangi' and the flesh thickness was higher in the yellow and orange cultivars, with 'K-Gloria orange' and 'Allrounder' being the thickest. The marketable yield of paprika, which was treated with cooling and heating treatments in the root zone, increased by 16.1% in the entire cultivars compared to the untreated ones, increased by 16.5% in 'Nagano', 10.3% in the 'Allrounder', 20.2% in the 'Naarangi', and 17.3% in 'Raon red'.

Experiments on Flow Characteristics of Asphalt Seal Composite Waterproofing Method for Underground Concrete Structure Exterior Wall Waterproofing (지하 콘크리트 구조물 외벽 방수용 아스팔트 씰재 복합방수 공법의 흘러내림 특성에 관한 실험)

  • Ko, Sang-Ung;Kim, Kyoung-Hoon;Kim, Young-Sam;Shin, Hong-Chul;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.297-303
    • /
    • 2018
  • With the changing trend of the building construction to high rising and large scaling, the underground structure has been increased, and its usage also increased and variety. Hence, to protect the underground structure against underground water, various water proofing methods has been developed. Among the many water proofing methods, the combined water proofing method using both asphalt seal and sheet has been widely used to secure the sufficient performance and decrease the construction failure. However, during the summer period of extremely high temperature conditions, the asphalt sealing materials were separated and leaked into the structure. Therefore, the aim of the research is to provide the quality standard of asphalt sealing material based on the various temperature changes depending on seasons. According to the experimental results, the temperature of the sealing materials applied on the slab was increased up to $54^{\circ}C$ which was $3^{\circ}C$ higher than the structure temperature of $51^{\circ}C$. Based on the melting test for asphalt sealing materials applied on the outside wall of the structure, in the case of water-dispersing typed materials showed significant melting down due to its slow evaporation and low viscosity. Furthermore, from the accelerated test conducted indoor conditions, a solvent-type and water-dispersing typed materials showed significant melting down due to their low viscosity and melting point in ambient conditions. Based on these results, viscosity and melting point are found as the important factors on asphalt sealing materials' quality, and it is necessary to designate the quantitative level of the viscosity and melting point for quality control.

Comparison of Agricultural Traits and Physicochemical Properties of Lentil (Lens culinaris Med.), Chickpea (Cicer aretinum L.), and Guar (Cyamopsis tetragonoloba L.) Germplasms Collected from Tropical and Subtropical Regions (열대, 아열대 지역 수집 렌즈콩, 병아리콩, 송이콩 유전자원의 농업형질과 이화학적 특성 비교)

  • Choi, Yu-Mi;Lee, Sukyeung;Lee, Myung-Chul;Oh, Sejong;Hur, Onsook;Cho, Gyu Taek;Yoon, Munsup;Hyun, Do Yoon
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.453-462
    • /
    • 2018
  • This study was carried out to investigate the utilization value of legume crops collected in tropical and subtropical areas. We examined agronomic traits to assess domestic adaptability and evaluated useful components of foreign legumes. We used a total of 201 genetic resources of three legumes, consisting of 68 lentils, 72 chickpeas and 61 guars. The average number of days to flowering of the three legumes ranged from 56.7 to 60.8 days; the shortest in guar and longest in chickpea. The average number of days to growth of the three legumes ranged from the shortest 86.8 days in lentil, to the longest 163.9 days in guar. The maturation period of the three legumes lasted from the end of May until mid-September, based on sowing in March. However, the average yield of lentil was very low, ranging from 0.5 g to 30.6 g, with an average 16.4 g based on 10 plants per accession. The average 100 seed weight of the three legumes was 2.2 g for lentil, 22.9 g for chickpea, and 3.8 g for guar. The crude protein content ranged from 14.1% to 32.4% with an average of 20.4%, the highest for guar and the lowest for chickpea. The average crude oil content in the three legume crops was generally low, ranging from 0.8% in lentil, to 4.3% in chickpea. The average dietary fiber content in the three legume crops varied from 15.7% to 50.7%. Guar was the highest source of fiber, followed by chickpea (19.3%) and lentil (15.7%). From the agricultural traits analysis, chickpea and guar could grow domestically. However, lentil was difficult to flower and fruit normally during the warmer season after May. Therefore, lentil should be considered for late summer cropping during the cool season. The physicochemical properties of the three legumes seem to be useful as they are similar to, or better than, those of the control common bean.

Ventilation at Supra-Optimal Temperature Leading High Relative Humidity Controls Powdery Mildew, Silverleaf Whitefly, Mite and Inhibits the Flowering of Korean Melon in a Greenhouse Cultivation (참외 시설 재배 시 고온에서의 환기 처리에 의한 상대습도 상승과 흰가루병, 담배가루이, 응애 방제 및 개화 억제)

  • Seo, Tae Cheol;Kim, Jin Hyun;Kim, Seung Yu;Cho, Myeong Whan;Choi, Man Kwon;Ryu, Hee Ryong;Shin, Hyun Ho;Lee, Choung Keun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.43-51
    • /
    • 2022
  • This study was conducted to investigate the effect of ventilation at high temperature on the control of powdery mildew, silverleaf whitefly two-spotted spider mite occurred at Korean melon cultivation greenhouse, and on leaf rolling and flowering of the plant in summer season. 'Alchanggul' grafted onto 'Hidden Power' rootstock was planted on soil bed with the distance of 40 cm. Three ventilation temperatures of 45℃, 40℃, and 35℃ as set points were compared. Ventilation treatment was done by control of side window operation from 18th June to 13th July when silverleaf whitefly, mite, and powdery mildew were occurred in all greenhouses. The temperature inside greenhouse was increased up to the set temperature point on sunny days and maintained for about 9 hours with high relative humidity at 45℃ condition. The differences of day maximum air temperature and day minimum RH were the highest at 45℃ treatment. After 11 days of treatments, the damage by powdery mildew and two-spotted spider mite was almost recovered at 45℃ treatment but not at 40 and 35℃. The population of silverleaf whitefly and two-spotted spider mite were significantly decreased at 45℃ treatment at 14 days after treatment, while powdery mildew symptom was not significantly decreased. Leaf rolling was observed at high temperature but not severe at 45℃ treatment. After 26 days of treatments, female flowers did not bloom at all at 45℃ treatment, and the number of male flowers was 1.2 among 15 nodes of newly grown shoots. As the result, it indicates that ventilation at the high temperature of 45℃ for about 2 to 3 weeks can be an applicable method to control above mentioned pests and disease, and to recover the vegetative growth of Korean melon by reducing flowering of the plant.

Studies on the Procedures of Accelerating Generation Advancement in Wheat and Barley Breeding IV. Advancement of Two Generations of Wheat Materials a Year at Suweon by Growing a Summer Generation (맥류의 세대촉진방법에 관한 연구 IV. 수원지역에서 소맥 1년 2기작 세대촉진재배)

  • Seong, B.Y.;Cho, C.H.;Park, M.W.;Hong, B.H.;Ahn, W.S.;Nam, J.H.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.35-42
    • /
    • 1980
  • To establish a generation acceleration technique, two crops a year at field condition of Suweon, 10 varieties different in their spring growth habit were tested with 6 different seeding time after harvesting. These materials were harvested on June 10, 19, 79 and tested for their seed production ability at varions seeding time from July I I to August 15 with a week interval. An immatured seed germination technique and green vernalization methods were applied in cycling generations and the results obtained were summarized as follows. 1. In summer growing, seedlings establishment after transplanting was better in earlier transplanting. 2. Heading time was remarkably enhanced by earlier transplanting. Considering the results of two years early or mid of July was the suitable time to plant the second summer crop. 3. Those varieties of spring growth habit expressed little variations in plant height among the varieties. In 1978 which is referred as warm year produced plant height as tall as 8-16cm and poor crop but produced good crop with 25-65cm plant height in 1979. 4. No definit tendency in the length of spike was. observed among the cultivars but longer spike was found in winter wheat compared to the spring. 5. Number of spikes per plant was ranged from 1 to 3 regardless the transplanting time in 1979. However, more spikes per plant were produced in early or mid of July transplanting and those varieties of higher growth habit than V did not produces any spikes. 6. Higher number of grains per spike was found at earlier transplanted varieties. Therefore, it is concluded that those materials of I-IV growth habit with mid or early July transplanting would be suitable in practical sense considering their ability of seed production. 7. Two-year results indicated that wheat crop can not tolerate the temperature level higher than average 32$^{\circ}C$ C at Suweon. In this regard, the cultivation schedule was established assuming average temperature condition like the year of 1979 which was possible to grow wheats.

  • PDF

A Study on the Characteristic of Habitat and Mating Calls in Korean Auritibicen intermedius (Hemiptera: Cicadidae) Using Bioacoustic Detection Technique (생물음향탐지기법을 활용한 한국 참깽깽매미 서식 및 번식울음 특성 연구)

  • Yoon-Jae Kim;Kyong-Seok Ki
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.592-602
    • /
    • 2022
  • This study aimed to check habitat distribution and analyze influencing factors by analyzing the mating calls of Auritibicen intermedius inhabiting limited locations in South Korea by applying bioacoustic detection techniques. The study sites were 20 protection areas nationwide. The mating call analysis period was 4 years from 2017 to 2021, excluding 2020. The bioacoustic recording system installed at each study site collected recordings of mating calls every day for 1 minute per hour. Climate data received from the Meteorological Agency, such as temperature, humidity, rainfall, cloudiness, and sunshine, were analyzed. The results of this study identified A. intermedius habitat only in four national parks in the highlands of Gangwon Province (Mt. Seorak, Mt. Odae, Mt. Chiak, and Mt. Taebak) out of 20 study sites. During the four years of study, the mating call period of A. intermedius was between August 5 and September 28, and the duration of the mating call was 31 to 52 days. The temperature analysis during the appearance period of A. intermedius showed that A. intermedius mainly produced mating calls at temperatures between 13.1℃ and 35.3℃, and the average temperature during the circadian cycle of mating calls (09:00 to 16:00) was 24.4 to 24.9℃. The analysis of the circadian cycle of mating calls at four study sites where A. intermedius appeared in 2019 showed that A. intermedius produced mating calls from 06:00 to 16:00 and that they peaked around 11:00 to 12:00. During the appearance period of A. intermedius, four species appeared in common: Hyalessa maculaticollis, Meimuna opalifera, Graptopsaltria nigrofuscata, and Suisha coreana. A logistic regression analysis confirmed that sunlight was the environmental factor affecting the mating call of A. intermedius. Regarding interspecific influence, it was confirmed that A. intermedius exchanged interspecific influence with 4 other common species (H. maculaticollis, M. opalifera, G. nigrofuscata, and S. coreana). The above results confirmed that A. intermedius habitats were limited in the highlands of Gangwon Province highlands in Korea and produced mating calls at a lower temperature compared to other species. These results can be used as basic data for future research on A. intermedius in Korea.