• Title/Summary/Keyword: 최강기둥

Search Result 8, Processing Time 0.026 seconds

Static and Dynamic Stability Analyses of Simple Tapered Columns with Constant Volume (일정체적 단순지지 변단면 기둥의 정·동적 안정해석)

  • Lee, Byoung Koo;Kim, Suk Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.533-538
    • /
    • 2006
  • This study deals with the static and dynamic stability analyses of simple tapered columns with constant volume. The crosssections of column taper are the regular polygons whose depths are varied with the parabolic functional fashion. The hingedhinged end constraint is chosen as the boundary condition of the column. The non-dimensional ordinary differential equation governing free vibrations of such column subjected to an axial load is derived and solved numerically. From numerical results, the relationships between natural frequencies and section ratios are obtained, from which the configurations of dynamic optimal shapes of columns and the strongest columns are extracted.

Buckling Loads of Column with Constant Surface Area (일정표면적 기둥의 좌굴하중)

  • Lee, Byoung Koo;Park, Kwang Kyou;Lee, Tae Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.1-7
    • /
    • 2011
  • This paper deals with buckling loads of the column with the constant surface area. The shape function of variable column depth is chosen as the linear taper. The ordinary differential equation governing buckled shapes of the column is derived based on the dynamic equilibrium equation of such column subjected to an axial load. Three kinds of end constraint of hinged-hinged, hinged-clamped and clamped-clamped are considered in numerical examples. Effects of the column parameters on buckling loads are extensively discussed. Especially, section ratios of the strongest column are calculated, under which the maximum, i.e. strongest, buckling loads are achieved. Also the buckled shapes are obtained for searching the nodal points where the inner transverse supports are simply installed to increase the buckling loads.

Free Vibrations and Buckling Loads of Tapered Beam-Columns of Regular Polygon Cross-section with Constant Volume (일정체적의 정다각형 단면을 갖는 변단면 보-기둥의 자유진동 및 좌굴하중)

  • Lee, Byong Koo
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.587-594
    • /
    • 1996
  • The differential equation governing both the free vibrations and buckling loads of tapered beam-columns of regular polygon cross-section with constant volume were derived and solved numerically. The parabolic and sinusoidl tapers were chosen as the variable depth of cross-section for the tapered beam-column. In numerical examples, the clamped-clamped, hinged-clamped and hinged-hinged end constraints were considered. The variations of frequency parameters and first buckling load parameters with the non-dimensional system parameters are reported in figures, and typical vibrating mode shapes are presented. Also, the configurations of strongest columns were determined.

  • PDF

Buckling oad and Post-buckling Behavior of Tapered Column with Constant Volume and Both Clamped Ends (일정체적 양단고정 변단면 기둥의 좌굴하중 및 후좌굴 거동)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.112-122
    • /
    • 1999
  • 이 논문은 일정체적을 갖는 양단고정 변단면 기둥의 좌굴하중 및 후좌굴 거동에 관한 연구이다. 기둥의 변단면으로는 직선형, 포물선형, 정현의 선형을 갖는세 가지 변단면을 채택하였다. Bernoulli-Euler 보 이론을 이용하여 압축하중이 작용하여 좌굴된 기둥이 정확탄성곡선을 지배하는 미분방정식을 유도하였다. 유도된 미분방정식을 Runge-Kutta 법과 REgula-Falsi법을 이용하여 수치해석하였다. 수치해석의 결과로 좌굴하중, 좌굴기둥의 평형경로 및 정확탄성곡선을 산출하였다. 또한 좌굴하중-단면비 곡선으로부터 최강기둥의 좌굴하중과 단면비를 산출하였다.

  • PDF

Static and Dynamic Optimal Shapes of Both Clamped Columns with Constant Volume (일정체적 양단고정 기둥의 정·동적 최적형상)

  • Lee, Byoung Koo;Kim, Suk Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.99-106
    • /
    • 2007
  • This paper deals with the static and dynamic optimal shapes of both clamped columns with constant volume. The parabolic taper with the regular polygon cross-section is considered, whose material volume and column length are held constant. Numerical methods are developed for solving natural frequencies and buckling loads of columns subjected to an axial compressive load. Differential equations governing the free vibrations of such column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine natural frequencies and buckling loads, respectively. From the numerical results, dynamic stability regions, dynamic optimal shapes and configurations of strongest columns are presented in figures and tables.

Elastica of Tapered Columns of Regular Polygon Cross-Section with Constant Volume (정다각형 단면을 갖는 일정체적 변단면 기둥의 정확탄성곡선)

  • LEE, Byoung Koo;OH, Sang Jin;MO, Jeong Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.79-87
    • /
    • 1996
  • 본 논문에서는 단순지지된 일정체적의 정다각형 단면을 갖는 변단면 기둥의 정확탄성곡선(elastica)을 산출할 수 있는 수치해석법을 개발하였다. 정확탄성곡선의 미분방정식은 Bernoulli-Euler 보 이론으로 유도하였고, 미분방정식의 수치적분은 Runge-Kutta method를 이용하였다. 미분방정식의 고유치인 지점의 단면회전각은 Regula-Falsi method를 이용하여 계산하였다. 변단면의 단면 깊이의 변화식으로는 직선식, 포물선식 및 정현식의 3가지 함수식을 채택하였다. 또한 유도된 미분방정식을 이용하여 대상기둥의 좌굴하중을 산출하고 이로부터 최강기둥의 단면비와 좌굴하중을 결정하였다.

  • PDF

Dynamic Optimal Shapes of Simple Beam-Columns with Constant Volume (일정체적 단순지지 보-기둥의 동적 최적단면)

  • Lee, Byoung Koo;Park, Kwang Kyou;Mo, Jeong Man;Lee, Sang Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.221-228
    • /
    • 1997
  • The main purpose of this paper is to determine the dynamic optimal shapes of simple beam-columns with the constant volume. The parabolic function is chosen as the variable equation for the depth of regular polygon cross-section. The ordinary differential equation including the effect of axial load is applied to calculate the natural frequencies. The Runge-Kutta and Regula-Falsi methods are used to integrate the differential equation and compute the frequencies, respectively. Then the dynamic optimal shape whose lowest natural frequency is highest is determined by reading the critical value of the frequency versus section ratio curve plotted by the frequency data. In the numerical examples, the simple beam-columns are analysed and the numerical results of this study are shown in tables and figures.

  • PDF

Free Vibrations and Buckling Loads of Tapered Beam-Columns of Circular Cross-Section with Constant Volume (일정체적 원형 변단면 보-기둥의 자유진동 및 좌굴하중)

  • 이병구
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.135-143
    • /
    • 1996
  • The differential equations governing both the free vibrations and buckling loads of tapered beam-columns of circular cross-section with constant volume are derived and solved numerically. The effects of axial load are included in the differential equations. The parabolic equation is chosen as the variable radius of circular cross-section for the tapered beam-column. In numerical examples, the clamped-clamped, clamped-hinged and hinged-hinged end constraints are considered. The variations of the frequency parameters and buckling load parameters with the non-dimensional system parameters are presented in figures and the configurations of strongest columns are obtained.

  • PDF