• Title/Summary/Keyword: 촬영조건의 정확도

Search Result 134, Processing Time 0.022 seconds

Measurement of Crack Width of Pavements Using Image Processing (이미지프로세싱을 이용한 도로포장의 균열폭 측정에 관한 연구)

  • Ko, Ji-Hoon;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.33-42
    • /
    • 2002
  • The cracks in the pavements result from drying shrinkage, temperature change, repeated traffic loadings and so on. The reduction of soil support, spatting and many local failures are caused by water and incompressible foreign materials infiltrated into the cracks. In order to reduce this kind of problems the crack width must be controlled and managed by the accurate measurement. The current method is a visual survey using a microscope, which requires traffic blocking. The purpose of this study is to find the best condition to measure accurate crack width using automated pavement condition survey equipment running at the similar speed as other vehicles. In this study pavement surfaces are filmed on an enlarged scale by the camera with a zoom lens, and then the proper focal distance is determined according to the crack width through a pilot survey. The conditions for measurement of the accurate crack width using the image processing technique are suggested by comparing crack widths surveyed using a microscope in the field with those computed by various factors in the image processing program, STADI-2. In conclusion, the camera with a focal distance of 75m could detect crack range of 0.5mm$\sim$1.2mm In width with an accuracy of 80% for CRCP. The camera with a focal distance of 12.5mm could detect crack range of 1.8mm$\sim$3.3mm in width with an accuracy of 90% for asphalt pavement.

  • PDF

Development of Suspended Sediment Concentration Measurement Technique Based on Hyperspectral Imagery with Optical Variability (분광 다양성을 고려한 초분광 영상 기반 부유사 농도 계측 기법 개발)

  • Kwon, Siyoon;Seo, Il Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.116-116
    • /
    • 2021
  • 자연 하천에서의 부유사 농도 계측은 주로 재래식 채집방식을 활용한 직접계측 방식에 의존하여 비용과 시간이 많이 소요되며 점 계측 방식으로 고해상도의 시공간 자료를 측정하기엔 한계가 존재한다. 이러한 한계점을 극복하기 위해 최근 위성영상과 드론을 활용하여 촬영된 다분광 혹은 초분광 영상을 통해 고해상도의 부유사 농도 시공간분포를 측정하는 기법에 대한 연구가 활발히 진행되고 있다. 하지만, 다른 하천 물리량 계측에 비해 부유사 계측 연구는 하천에 따라 부유사가 비균질적으로 분포하여 원격탐사를 통해 정확하고 전역적인 농도 분포를 재현하기는 어려운 실정이다. 이러한 부유사의 비균질성은 부유사의 입도분포, 광물특성, 침강성 등이 하천에서 다양하게 분포하기 때문이며 이로 인해 부유사는 지역별로 다양한 분광특성을 가지게 된다. 따라서, 본 연구에서는 이러한 영향을 고려한 전역적인 부유사 농도 예측 모형을 개발하기 위해 실내 실험을 통해 부유사 특성별 고유 분광 라이브러리를 구축하고 실규모 수로에서 다양한 부유사 조건에 대한 초분광 스펙트럼과 부유사 농도를 측정하는 실험을 수행하였다. 실제 부유사 농도는 광학 기반 센서인 LISST-200X와 샘플링을 통한 실험실 분석을 통해 계측되었으며, 초분광 스펙트럼 자료는 초분광 카메라를 통해 촬영한 영상에서 부유사 계측 지점에 대한 픽셀의 스펙트럼을 추출하여 구축하였다. 이렇게 생성된 자료들의 분광 다양성을 주성분 분석(Principle Component Analysis; PCA)를 통해 분석하였으며, 부유사의 입도 분포, 부유사 종류, 수온 등과의 상관관계를 통해 분광 특성과 가장 상관관계가 높은 물리적 인자를 규명하였다. 더불어 구축된 자료를 바탕으로 기계학습 기반 주요 특징 선택 알고리즘인 재귀적 특징 제거법 (Recursive Feature Elimination)과 기계학습기반 회귀 모형인 Support Vector Regression을 결합하여 초분광 영상 기반 부유사 농도 예측 모형을 개발하였으며, 이 결과를 원격탐사 계측 연구에서 일반적으로 사용되어 오던 최적 밴드비 분석 (Optimal Band Ratio Analysis; OBRA) 방법으로 도출된 회귀식과 비교하였다. 그 결과, 기존의 OBRA 기반 방법은 비선형성을 증가시켜도 좁은 영역의 파장대만을 고려하는 한계점으로 인해 부유사의 다양한 분광 특성을 반영하지 못하였으며, 본 연구에서 제시한 기계학습 기반 예측 모형은 420 nm~1000 nm에 걸쳐 폭 넓은 파장대를 고려함과 동시에 높은 정확도를 산출하였다. 최종적으로 개발된 모형을 적용해 다양한 유사 조건에 대한 부유사 시공간 분포를 매핑한 결과, 시공간적으로 고해상도의 부유사 농도 분포를 산출하는 것으로 밝혀졌다.

  • PDF

Comparison of Radiation Dose in the Measurement of MDCT Radiation Dose according to Correction of Temperatures and Pressure, and Calibration of Ionization Chamber (MDCT 선량측정에서 온도와 압력에 따른 보정과 Ionization Chamber의 Calibration 전후 선량의 비교평가)

  • Lee, Chang-Lae;Kim, Hee-Joung;Jeon, Seong-Su;Cho, Hyo-Min;Nam, So-Ra;Jung, Ji-Young;Lee, Young-Jin;Lee, Seung-Jae;Dong, Kyung-Rae
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • This study aims to conduct the comparative analysis of the radiation dose according to before and after the calibration of the ionization chamber used for measuring radiation dose in the MDCT, as well as of $CTDI_w$ according to temperature and pressure correction factors in the CT room. A comparative analysis was conducted based on the measured MDCT (GE light speed plus 4 slice, USA) data using head and body CT dosimetric phantom, and Model 2026C electrometer (RADICAL 2026C, USA) calibrated on March 21, 2007. As a result, the $CTDI_w$ value which reflected calibration factors, as well as correction factors of temperature and pressure, was found to be the range of $0.479{\sim}3.162mGy$ in effective radiation dose than the uncorrected values. Also, under the routine abdomen routine CT image acquisition conditions used in reference hospitals, patient effective dose was measured to indicate the difference of the maximum of 0.7 mSv between before and after the application of such factors. These results imply that the calibration of the ion chamber, and the correction of temperature and pressure of the CT room are crucial in measuring and calculating patient effective dose. Thus, to measure patient radiation dose accurately, the detailed information should be made available regarding not only the temperature and pressure of the CT room, but also the humidity and recombination factor, characteristics of X-ray beam quality, exposure conditions, scan region, and so forth.

  • PDF

A Photogrammetric Network and Object Field Design for Efficient Self-Calibration of Non-metric Digital Cameras (비측정용 디지털 카메라의 효율적인 자체 검정을 위한 대상지 구성)

  • Oh Jae-Hong;Eo Yang-Dam;Lee Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.281-288
    • /
    • 2006
  • Recent increase in the number of pixels of a non-metric digital camera encourages to use it for close-range photogrammetry such as modeling cultural asset and buildings. However, these cameras have to be calibrated far close-range photogrammetry application. For self-calibration, an appropriate pbotograrnmetric network and object field should be designed. In this paper, we studied the effect on self-calibration accuracy changes according to the change of the number of ground control points, dimensions of the ground control points, and the combination of images. We concluded that self-calibration with three photos including a vertical photo can give the stable accuracy of interior orientation parameters and 10 ground control points on a plane can give high accuracy for object reconstruction.

Three Dimensional Analysis of the Whole Interior-Surface of Structures by Multiple Close-Range Photogrammetry (다중근접사진측량에 의한 구조물 내부전면의 3차원 해석)

  • 이진덕;강준묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.1
    • /
    • pp.7-18
    • /
    • 1993
  • In analyzing whole surface of non-topographic objects, the design of multi-station photogrammetric network must involve a number of questions such as geometric configuration of exposure stations, imaging geometry, control point configuration or weight allowance of adjustments. Above all, the surveying of the interior of narrow longitudinal structures needs the design of special photogrammetric network. The main objective of this paper is to suggest the schemes for solving difficult problems attendant upon whole inside-surface analysis of structure and to improve the accuracy and reliability of final measurements. For it, the multi-station exposure network suitable to shape and size of the inside of the structure was designed. Then three dimensional data were acquired by bundle adjustments derived from multi-station photos and the effects of network design factors on accuracy of measurements were contemplated. Also, the algorithm for detection of blunders was developed here is expected to lead to improvement of the reliability of photogrammetric solutions.

  • PDF

Wear and Implantation Tilt Measurements using X-ray and CAD (X-ray영상과 CAD를 이용한 인공고관절의 마모 및 식립각 측정법)

  • Lee, Jong Min;Lee, Yeon Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.107-114
    • /
    • 2018
  • Long-term complications such as loosening, wear, osteolytic lesion and granulomatous reaction by foreign bodies can occur, after total hip arthroplasty. The implantation alignment effects dislocation and wear, according to its amount and direction. Wear particles in total hip arthroplasty brings about biochemical complications such as osteolysis or send wear. In this sense, it is important to regularly check wear and alignment of total hip replacement. Because the wear in followup of 10 years may remain in a small amount, like a 1 or 2 mm generally, somewhat precise measurement tool has to be established. The wear and alignment measurement softwares commercially available currently lack in project saving or reproducibility. This study suggests a reliable method for the measurement using an X-ray image and a CAD software. The proposed method can be executed only if having a CAD software under most of current general clinical radiographical environment. The proposed was revealed through tests for the method to have accuracy of 0.06 mm with precision of 0.05 mm for wear measurement, and precision of 0.27 degrees for tilt measurement.

Epipolar Resampling for High Resolution Satellite Imagery Based on Parallel Projection (평행투영 기반의 고해상도 위성영상 에피폴라 재배열)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Chang, Hwi-Jeong;Jeong, Ji-Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.81-88
    • /
    • 2007
  • The geometry of satellite image captured by linear CCD sensor is different from that of frame camera image. The fact that the exterior orientation parameters for satellite image with linear CCD sensor varies from scan line by scan line, causes the difference of image geometry between frame and linear CCD sensor. Therefore, we need the epipolar geometry for linear CCD image which differs from that of frame camera image. In this paper, we proposed a method of resampling linear CCD satellite image in epipolar geometry under the assumption that image is not formed in perspective projection but in parallel projection, and the sensor model is a 2D affine sensor model based on parallel projection. For the experiment, IKONOS stereo images, which are high resolution linear CCD images, were used and tested. As results, the spatial accuracy of 2D affine sensor model is investigated and the accuracy of epipolar resampled image with RFM was presented.

  • PDF

Efficiency Evaluation of CT Simulator QA Phantom (전산화 단층촬영 모의치료기 정도관리 팬텀의 유용성 평가)

  • Hwang, Se-Ha;Min, Je-Sun;Lee, Jae-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.21 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • Purpose: The purpose is to evaluate efficiency of the CT simulator QA phantom manufactured for daily QA. Materials and Methods: We made holes ($1{\times}100{\times}1\;mm$) to verify accuracy between image and real measurement in polystyrene phantom and made 1 mm holes to verify table movement accuracy at superior and inferior 100 mm to the center of the phantom and inserted radiopacity material. To evaluate laser alignment, we made cross mark on the right and left side at phantom and to evaluate CT number accuracy we made 3 cylindrical holes and inserted equivalence material of bone, water, air in them. After CT scanning the phantom, We evaluated accuracy between image and real measurement, accuracy of table movement, laser, and CT number using exposed image. Results: It was measured that the accuracy between image and real measurement was ${\pm}0.3\;mm$, table movement accuracy was ${\pm}0.3\;mm$, laser accuracy was ${\pm}0.5\;mm$ from 7th January to 7th March in 2008 as within the reference point ${\pm}1\;mm$. In the CT number accuracy of bone was ${\pm}10\;HU$, air was ${\pm}5\;HU$, water was ${\pm}5\;HU$ as within the reference point is ${\pm}10\;HU$. Conclusion: We was able to perform CT simulator QA and laser equipment QA more conveniently and fast using manufactured phantom at the same time. We will be able to make more accurate treatment plan that added to QA procedures using images at previous daily QA.

  • PDF

Accuracy Evaluation of LiDAR Measurement in Forest Area (산림지역에서 LiDAR 측량의 정확도 평가)

  • Lee, Sang-Hoon;Lee, Byoung-Kil;Kim, Jin-Kwang;Kim, Chang-Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.545-553
    • /
    • 2009
  • Digital Elevation Models (DEM) is widely used in establishing the topographic profile in nation spatial information. Aerial Light Detection And Ranging (LiDAR) system is one of the well-known means to produce DEM. The system has fast data acquisition procedures and less weather-dependent restrictions compared to photogrammetric approaches. In this regards, LiDAR has been widely utilized and accepted in the process of nation spatial information generation due to its sufficient positional accuracy. However, the investigation of the accuracy of aerial LiDAR data over the area of forestation with various kinds of vegetations has been barely implemented in Korea. Hence, this research focuses on the investigation of the accuracy of aerial LiDAR data over the area of forestation and the evaluation of the acquired accuracy according to the characteristics of the vegetations. The study areas include land with shrubs and its adjacent forest area with mixed tree species. The spots for the investigation have been selected to be well-distributed over the whole study areas and their coordinates are surveyed by Global Positioning Systems (GPS). Then, the surveyed information and aerial LiDAR data have been compared with each other and the result accuracy has been evaluated. Conclusively, it is recommended that LiDAR data collection to be conducted after defoliation period, especially over the areas with broadleaf trees due to the possibility of significant outliers.

Development of a Lane Detect Algorithm from Road-Facing Cameras on a Vehicle (차량에 부착된 측하방 CCD카메라를 이용한 차선추출 알고리즘 개발)

  • Rhee, Soo-Ahm;Lee, Tae-Yoon;Kim, Tae-Jung;Sung, Jung-Gon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.87-94
    • /
    • 2005
  • 3D positional information of lane can be automatically calculated tv combining GPS data, IMU data if coordinates of lane centers are given. The Road Safety Survey and Analysis Vehicle(RoSSAV) is currently under development to analyze three dimensional safety and stability of roads. RoSSAV has GPS and IMU sensors to get positional information of the vehicle and two road-facing CCD cameras for extraction of lane coordinates. In this paper, we develop technology that automatically detects centers of lanes from the road-facing cameras of RoSSAV. The proposed algorithm defines line-support regions by grouping pixels with similar edge orientation and magnitude together and extracts a line from each line support region by planar fitting. Then if extracted lines and the region in-between satisfy the criteria of brightness and width, we decide this region as lane. The proposed algorithm was more precise and stable than the previously proposed algorithm based on brightness threshold method. Experiments with real road scenes confirmed that lane was effectively extracted by the proposed algorithm.

  • PDF