• Title/Summary/Keyword: 촬영기법

Search Result 1,207, Processing Time 0.043 seconds

Segmentation and Image Fusion using PET/CT Images (PET/CT 영상을 이용한 영역 분리 및 영상 퓨전)

  • Seo, An-Na;Kim, Jee-In
    • Journal of the Korea Computer Graphics Society
    • /
    • v.11 no.2
    • /
    • pp.26-33
    • /
    • 2005
  • 의료기기들 중 기능 영상을 보기 위해 이용되는 PET 장치에서 획득된 결과 영상은 선명하지 않기 때문에, 해부학적 구조와 기능 영상을 동시에 보기 위해서는 선명한 영상을 제공하는 CT 와 PET 장치와 하나로 통합하여 영상을 획득하게 되었다. 그래서 한번의 촬영으로 PET/CT 영상을 얻을 수 있게 된 것이다. 서로 다른 특성을 갖는 이미지를 융합하게 되면 보다 정확한 진단을 내리는데 많은 도움을 준다. 본 논문은 CT 영상에서 폐 영역을 반 자동(Semi-Auto)으로 분리한 후 PET 영상에 자동으로 융합하는 방법을 제안한다. 반 자동 폐 영역 분할을 위해 1 차원 신호 처리 기법과 Seeded Region Growing 기법을 사용한다. 수행된 폐 분리 결과는 몸의 해부학적 구조를 보기 위해 사용되는 CT 영상에서 추출한 폐 영역을 기능을 보기 위한 PET 영상에 퓨전 함으로서 진단 전문가가 보다 정확한 진단을 하는데 도움이 될 것이다. 또한 이러한 기능을 쉽게 구현하고 사용할 수 있도록 시각 프로그래밍 기법을 접목하였다.

  • PDF

Smartphone Based FND Recognition Method using sequential difference images and ART-II Clustering (차영상과 ART2 클러스터링을 이용한 스마트폰 기반의 FND 인식 기법)

  • Koo, Kyung-Mo;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1377-1382
    • /
    • 2012
  • In this paper, we propose a novel recognition method that extract source data from encoded signal that are displayed on FND mounted on home appliances. First of all, it find a candidate FND region from sequential difference images taken by smartphone and extract segment image using clustering RGB value. After that, it normalize segment images to correct a slant error and recognize each segments using a relative distance. Experiments show the robustness of the recognition algorithm on smartphone.

Superpixel based foreground object detection from a video sequence (수퍼픽셀을 이용한 동영상에서의 전경 객체 검출)

  • Nam, Jinwoo;Yang, Seungjoon;Ko, Eunjin;Jang, Jonghyun;Sim, Jae-Young
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.66-67
    • /
    • 2012
  • 본 논문에서는 고정된 카메라로 촬영한 동영상에서 수퍼픽셀(superpixel)을 이용하여 전경 객체 영역을 효과적으로 검출하는 기법을 제안한다. 기존의 픽셀 기반 전경 객체 검출 기법들은 단위 픽셀에 대한 전/배경 판단을 수행하므로 실제 전경 객체 영역에 대한 정확한 검출이 어려운 단점을 지닌다. 수퍼픽셀은 성질이 유사한 픽셀들의 집합을 의미하며 영상의 과도한 분할에 주로 사용되었다. 본 논문에서는 이러한 수퍼픽셀을 이용하여 동영상의 각 프레임을 과도 분할하고, 분할된 각각의 수퍼픽셀을 전경 객체와 배경의 판단 단위로 이용한다. 제안하는 알고리듬을 적용하여 실험한 결과 기존의 픽셀 단위 검출 기법에서 나타났던 오검출을 줄임과 동시에 전경 객체의 형태를 보다 충실하게 검출함을 확인 할 수 있다.

  • PDF

Retouching Method for Watercolor Painting Style Using Mean Shift Segmentation (Mean Shift Segmentation을 이용한 수채화 스타일 변환 기법)

  • Lee, Sang-Geol;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.433-434
    • /
    • 2010
  • 본 논문에서는 영상처리에서 많이 사용하는 bilateral filtering과 mean shift segmentation을 이용하여 일반적인 사진을 수채화 스타일로 변환하는 기법에 대하여 제안한다. 먼저 bilateral filtering을 이용하여 사진의 외곽선 부분은 보존하면서 고주파 성분을 약화시키도록 한다. 그리고 bilateral filtering된 영상에서 mean shift segmentation을 수행하여 수채화 스타일의 영상을 생성한다. 본 논문에서 제안하는 기법으로 다양한 사진에 대하여 실험한 결과 수채화 스타일로 잘 변화되는 것을 확인하였으며 특히 주광에서 촬영한 풍경 사진들에 대하여 보다 우수한 성능을 보임을 확인하였다.

  • PDF

Creating Full View Panorama Image from Multiple Images (다중영상으로부터 360도 파노라마 생성)

  • Joe, Jun-Seong;Lee, Bum-Jong;Park, Jong-Seung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10b
    • /
    • pp.162-166
    • /
    • 2007
  • 단일 영상의 시야각 한계를 극복하기 위해 다중 영상으로부터 하나의 파노라마 영상으로 만들 수 있다. 파노라마 영상은 좌우 360도까지의 시야각을 확보할 수 있어서 복잡한 실제 환경을 가상 환경에서의 배경으로 사용하고자 할 경우에 유용하다. 본 논문에서는 가상 환경에서의 배경으로 사용할 수 있는 파노라마 영상 생성 기법을 제안한다. 다중 영상들을 촬영하고 이를 사용하여 하나의 구형 파노라마 영상을 생성한다. 상하 시야각을 180도까지 확보하기 위한 제작 기법을 제시한다. 또한 생성된 구형 파노라마 영상으로부터 3차원 렌더링에 적합한 텍스쳐로의 변환과정을 제시한다 실제 환경을 가상화할 시에 파노라마 배경을 사용하면 조밀한 배경을3차원적으로 모델링하지 않고도 배경을 3차원적으로 표현할 수 있으므로 제안된 기법은 가상현실 응용에 유용하게 사용될 수 있다.

  • PDF

The Design of Authoring Tool for Realistic 3D Virtual Space Based on 2D Image (영상 기반의 사실적 3차원 가상공간 저작도구의 설계)

  • 오병선;장봉석;김진영;김은지;정일홍
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.503-507
    • /
    • 2003
  • 기존의 영상기반 3차원 가상공간 구축 기법들은 단일 영상을 입력으로 하여 하나의 가상공간을 구축하기 때문에, 가상공간의 영역이 매우 협소하고 가상공간 내부에서 관찰자의 네비게이션기능이 제한적이었다. 또한 특정 영상에 대해서만 사실성을 보장하기 때문에, 실세계를 반영한 모든 영상에 대해서 가상공간 구축 기법들을 일반화 할 수 없다. 이에 실세계를 촬영한 영상을 3차원 가상공간으로 복원하기 위해서 이러한 가상공간 구축 기법들을 통합해야할 필요성이 있다. 본 논문에서는 한 장의 영상을 입력으로 하나의 가상공간을 구축했던 기존의 방법들을 통합하여 여러 장의 영상을 입력으로 여러 개의 가상공간을 구축하고, 가상공간 지도의 개념을 도입하여 이를 연결하여 광범위한 3차원 가상공간을 구축할 수 있는 IVSD(Image-based Virtual Space Designer) 저작도구의 설계에 관하여 기술하였다.

  • PDF

Development of Robot Arm Placing technology based on Artificial Intelligence using image data (영상을 적용한 인공지능을 이용한 Robot Arm Placing 기술 개발)

  • Baek, Young-Jin;Kim, Wonha
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.652-655
    • /
    • 2020
  • 최근 딥 러닝을 이용해 기계로 인간을 대체하는 스마트 팩토리에 대한 연구 및 개발이 활발히 진행되고 있다. 그러나 FPCB를 Placing하는 방법에 기계를 도입하는 과정은 발전이 더딘 상태이다. 현재 로봇 팔을 이용해 Placing하는 방법은 사람이 직접 로봇 팔을 튜닝해 사용하고 있다. 이에 본 논문은 딥 러닝을 이용한 영상처리 기법을 활용해 FPCB를 사람의 개입 없이 트레이에 삽입하는 기법을 개발하였다. 이를 위해 여러 알고리즘을 비교한 후 각각의 장단점을 고려해 적합한 알고리즘을 제시하였다. 본 논문에서 제시하는 기법은 FPCB에 아무 행동을 가하지 않으며, 힘 센서, 깊이 센서 등 기타 센서들의 도움 없이 RGB 센서(카메라)를 통해 획득한 이미지만을 이용해 자동화가 가능하다. 또한, 개발 단계에서 실제 기계를 이용해 이미지 촬영, 이동 등을 진행했기 때문에 조명, 로봇 팔 위치 등 알고리즘 외 조건들에 영향을 받지 않고 실제 사용이 가능하다.

  • PDF

Effectiveness of Data Augmentation Using Chroma Key Technique (크로마 키 기법을 적용한 데이터 증강 기법의 효용에 대한 연구)

  • Eui Jae Lee;Keun Byeol Hwang;jae-hak sa;Sang Woo Park
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.456-458
    • /
    • 2023
  • 원본 이미지를 변형하여 학습용 데이터를 확장하는 기법에 대해서는 이전부터 꾸준히 논의된 바가 있다. 턴 테이블과 크로마 키를 이용하여 객체의 영상을 촬영하고 프레임을 추출하여 이미지 분류, 영상 내 객체 탐지 등에 사용이 가능한 데이터 셋의 확장 구축 방안에 대해 다루며, 성능 분석 결과 평균 90% 이상의 객체 검출률을 보였으며 객체 탐지 모델의 경우에서 보다 높은 정확도를 보임을 확인할 수 있었다. 영상내 단일 객체를 인지하기 위한 상황을 위해 본 논문이 제시하는 데이터셋 구축 방안은 충분한 효과를 보일 수 있을 것으로 기대된다.

Penetration Evaluation for X-ray Images Based on Residual Analysis of Histogram Equalization (히스토그램 평탄화 잔차 분석 기반 X-ray 영상의 투과도 평가 기법)

  • JunYoung Heo;HyeonJin Choi;Dong-Yeon Yoo;Joo-Sung Sun;Jung-Won Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.597-598
    • /
    • 2023
  • X-ray는 촬영 방식의 한계로 진단하기 어려운, 품질 낮은 영상을 다수 발생시킨다. 이러한 저품질 영상은 임상 현장에서의 진단이 어려울 뿐만 아니라, 진단 보조 도구를 개발함에 모델의 성능과 신뢰도를 떨어뜨리는 주요 요소가 된다. 특히 투과도가 낮은 영상은 학습 성능에 악영향을 미친다는 것이 입증된 바 있다. 따라서 본 연구는 투과도가 낮은 영상을 진단에 부적합한 영상으로 정의하여, 이를 분류하는 기법을 제안한다. 제안하는 기법은 민감도 94.9%. 특이도 96.0%의 높은 성능을 보였다.

Measurement of the Flow Field in a River (LSPIV에 의한 하천 표면유속장의 관측)

  • Kim, Young-Sung;Yang, Jae-Rheen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1812-1816
    • /
    • 2009
  • 이미지 해석에 의한 유속장 측정방법은 유체역학분야에서 지난 30 여년 동안 많이 활용되어온 속도측정 기법으로 오늘날에는 이를 수공학 분야에서 이를 유량측정 등 수리현상 해석에 활용하려는 시도가 다각적으로 이루어지고 있다. 이에 본 연구에서는 이미지 해석에 의한 유속장 측정방법을 용담댐 시험유역에 적용하여 그의 자연하천에서의 적용성을 검토하고자 한다. 이미지 해석에 의한 유속장 측정방법은 PIV(Particle Image Velocimetry)로 통칭되고 있으며, PIV는 seeding, illumination, recording, 및 image processing의 네 가지 요소로 구성된다. seeding을 위해서 유체를 따라 흐를수 있는 작은 입자를 유체에 첨가한다. 유체를 따라 흐르는 입자들의 선명한 이미지를 얻기 위해서illumination이 필요하다. PIV를 이용하여 흐름을 해석하기 위한 illumination은 일반적으로 이중펄스 레이저가 이용된다. 이렇게 유속장 해석을 하려는 유체에 대하여 seeding 및 illumination이 준비되면 단일노출- 다중 프레임법, 혹은 다중노출-단일 프레임법으로 흐름을 recording을 한다. image processing은 이미지를 다운로드하고, 디지타이징 및 화질향상을 하는 전처리(pre-processing), 상관계수의 산정에 의한 유속 벡터의 결정 및 에러 벡터를 제거하고 유속장을 그래프화하는 후처리(post-processing) 과정으로 구성된다. LSPIV(Large Scale PIV)는 PIV의 기본원리를 근거로 하여 기존의 PIV에 비하여 실험실 내에서의 수리모형실험이나 일반 하천에서의 유속측정과 같은 큰 규모$(4m^2\sim45,000m^2$)의 흐름해석을 할 수 있도록 Fujita et al.(1994)와 Aya et al.(1995)이 확장시킨 것이다. PIV와 비교시 LSPIV의 다른 점은 넓은 흐름 표면적을 포함하기 위하여 촬영시에 카메라의 광축과 흐름 사이의 각도가 PIV에서 이용하는 수직이 아닌 경사각을 이용하였고 이에 따라 발생하는 이미지의 왜곡을 제거하기 위하여 이미지 변환기법을 적용하여 왜곡이 없는 정사촬영 이미지로 변환시킨다. 이후부터는 PIV의 이미지 처리 방법이 적용되어 표면유속을 산정한다. 다만 이미지 변환을 PIV 이미지 처리 전에 하느냐 후에 하느냐에 따라 유속장 해석결과에 차이가 있다. PIV의 네가지 단계를 포함하여 LSPIV의 각 단계를 구분하면, seeding, illumination, recording, image transformation,image processing 및 post-processing의 여섯 단계로 나뉘어진다 (Li, 2002). LSPIV를 적용시 물표면 입자의 Tracing을 위하여 자연하천에서 사용하기에 적합한 환경친화적인 seeding 재료인 Wood Mulch를 사용하여 유속을 측정하였다. 적용지점은 용담댐 상류의 동향수위관측소 지점으로 이 지점은 한국수자원공사의 수자원시험유역이 위치하고 있다. 이미지의 촬영은 가정용 비디오 캠코더 (Sony DCR-PC 350)을 이용하여 두 줄기의 흐름에 대하여 각각 약 5분 동안의 영상을 촬영한후 이중에서 seeding의 분포가 잘 이루어진 약 1분간을 추출한후 이를 이용하여 PIV 분석에 이용하였다. 대체적으로 유속장의 계산이 무난하게 이루어지었으나 비교적 수질 상태가 양호하고, 수심이 낮고, 하상재료가 자갈로 이루어져 있어 비슷한 색상의 seeding 재료를 추적하기 어려운 구간이 발생한 부분에서는 유속의 계산이 정확히 이루어지지 않았다.

  • PDF