• Title/Summary/Keyword: 총자기이상

Search Result 2, Processing Time 0.017 seconds

Subsurface Geological Structure of the Southwestern Part of the Ogcheon Zone by Gravity and Magnetic Surveys (중력 및 자력탐사에 의한 옥천대 남서부의 지하 지질구조)

  • 김성균;오진용;안건상;김용준
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.285-296
    • /
    • 1998
  • As a part of the study for understanding the deep geological structure of the Ogcheon Zone, both gravity and geomagnetic surveys are performed. A 70km survey line of which direction is nearly perpendicular to major faults in the southern tip of the Zone. The observed data are corrected and transformed into Bouguer and total magnetic intensity anomalies, respectively. Recent studies for petrology and geochemistry in the southwestern Ogcheon Zone in the vicinity of the survey line are reviewed for better interpretation. Both gravity and geomagnetic anomalies abruptly change around Janghung area, the southern boundary of the, Ogcheon Zone. This rapid increase of Bouguer anomaly around Janghung area can be explained by a deep seated normal fault with fairy large displacement between Precambrian gneisses and the denser intermediate plutonic rocks. It is believed that the fault acted an important role for the formation and evolution of the Ogcheon Zone. A pseudomagnetic intensity anomaly is calculated from the Bouguer anomaly assuming that the both anomalies are associated with the common source. From the origin of the survey line to the 50km point, the calculated anomaly coincides with observed magnetic anomaly. Whereas both anomalies show negative correlation in the outside 50km. From the residual Bouguer anomalies, the subterranean geological structure is provided through the iterative forward method. The initial model is obtained from informations about the surface geology as well as the results of the inverse method.

  • PDF

Study on the Structure of the Korea-Japan Joint Development Zone by Means of Geophysical Data (지구물리 자료를 이용한 한일공동개발구역 일원의 구조 해석)

  • Jeongwon Ha;Sik Huh;Hyoungrea Rim
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.23-36
    • /
    • 2024
  • In this study, we analyze the structure of the Korea-Japan Joint Development Zone (JDZ) using gravity, magnetic, and seismic data. Gravity and magnetic data analysis confirmed that the Jeju Basin exhibits low anomalies compared to adjacent areas. We applied the total gradient to the Bouguer anomaly to identify basin boundaries, and computed the analytic signal from the total magnetic anomaly data to enhance the edges of the magnetic anomalies. The Taiwan-Sinzi Belt, exhibits high magnetic anomalies and crosses the center of the JDZ in the northeast-southwest direction; we presume that intrusive rocks are sporadic in the JDZ. The 3D inversion results of the gravity and magnetic data show a strong correlation between magnetic susceptibility and density (i.e. a low-density zone in the Jeju Basin and the Ho Basin, and a high magnetic susceptibility distribution in the Taiwan-Sinzi Belt). Comparison of the density and seismic profiles of the Jeju Basin shows that high densities are associated with sill, horst, and basement highs, whereas low densities are associated with basement low and grabens. These results suggest that interpretations based on seismic, gravity and magnetic data can effectively reveal the subsurface structure of the JDZ.