• Title/Summary/Keyword: 총에너지 사용량

Search Result 53, Processing Time 0.03 seconds

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.

Analysis of Building Energy Reduction Effect based on the Green Wall Planting Foundation Type Using a Simulation Program (건물일체형 패널형 벽면녹화 식재기반 유형별 건물에너지 성능 분석)

  • Kim, Jeong-Ho;Kwon, Ki-Uk;Yoon, Yong-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.936-946
    • /
    • 2015
  • This study is aimed to analyze the reduction performance of building energy consumption according to planting base types of panel-type green walls which can be applied to existing buildings. The performance was compared to the general performance of green walls that have demonstrated effects of improving the thermal environment and reducing building energy consumption in urban areas. The number of planting base types was 4 in total, and simulations were conducted to analyze the thermal conductivity, thermal transmittance, and overall building energy consumption rate of each planting base type. The highest thermal conductivity by the planting base type was Case C (0.053W/mK), followed by Case B (0.1W/mK) and Case D (0.17W/mK). According to the results of energy simulation, the most significant reduction of cooling peak load per unit area was Case C (1.19%), followed by Case B (1.14%) and Case D (1.01%) when compared to Case A to which green wall was not applied; and the most significant reduction of heating peak load per unit area was estimated to be Case C (2.38%), followed by Case B (1.82%) and case D (1.50%) when compared to Case A. The amount of yearly cooling and heating energy use per unit area showed 3.04~3.22% of reduction rate. The amount of the 1st energy use showed 5,844 kWh/yr of decrease on average for other types when compared to Case A. The amount of yearly $CO_2$ emission showed 996kg of decrease on average when compared to Case A to which the green wall was not applied. According to the results of energy performance evaluation by planting location, the most efficient energy performance was eastward followed by westward, southward and northward. According to the results of energy performance evaluation by planting location by green wall ratio, it was found that as the ratio of green wall increased, the energy performance displayed better results, showing approx. double reduction rate in energy consumption at 100% of green wall ratio than the reduction rate at 20% to 80% of green wall ratio.

Design of Standby Power Shut-off Client Based on Near Field Communication (근거리 무선통신(NFC) 기반의 대기전력 차단 클라이언트 설계)

  • Chun, Joong-Chang;Rho, Jin-Song;Choi, Kyung-Sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.978-980
    • /
    • 2013
  • In this paper, we have presented a basic idea of a power shut-off client based on NFC (near field communication). For the first step of the system design, we have shown the conceptual diagrams of the hardware configuration and the software logic flow. This system can be applied to the integrated power control in home, office, school, factory, and apartment. The standby power shut-off system will bring saving in electrical energy and cost.

  • PDF

Comparison of Direct and Indirect $CO_2$ Emission in Provincial and Metropolitan City Governments in Korea: Focused on Energy Consumption (우리나라 광역지방자치단체의 직접 및 간접 $CO_2$ 배출량의 비교 연구: 에너지 부문을 중심으로)

  • Kim, Jun-Beum;Chung, Jin-Wook;Suh, Sang-Won;Kim, Sang-Hyoun;Park, Hung-Suck
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.874-885
    • /
    • 2011
  • In this study, the urban $CO_2$ emission based on energy consumption (Coal, Petroleum, Electricity, and City Gas) in 16 provincial and metropolitan city governments in South Korea was evaluated. For calculation of the urban $CO_2$ emission, direct and indirect emissions were considered. Direct emissions refer to generation of greenhouse gas (GHG) on-site from the energy consumption. Indirect emissions refer to the use of resources or goods that discharge GHG emissions during energy production. The total GHG emission was 497,083 thousand ton $CO_2eq.$ in 2007. In the indirect GHG emission, about 240,388 thousand ton $CO_2eq.$ was occurred, as 48% of total GHG emission. About 256,694 thousand ton $CO_2eq.$ (52% of total GHG emissions) was produced in the direct GHG emission. This amount shows 13% difference with 439,698 thousand ton $CO_2eq.$ which is total national GHG emission data using current calculation method. Local metropolitan governments have to try to get accuracy and reliability for quantifying their GHG emission. Therefore, it is necessary to develop and use Korean emission factors than using the IPCC (Intergovernmental Panel on Climate Change) emission factors. The method considering indirect and direct GHG emission, which is suggested in this study, should be considered and compared with previous studies.

Building Data for Household Energy Usage profile (가구별 에너지 사용 패턴 및 프로파일 설계)

  • Lee, Seung-Han;Ko, Seok-Bai;Han, Sang-Soo;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.300-306
    • /
    • 2011
  • In this paper, we suggest a usage profiles for electric home appliances. In Korea, it is published the records for total consumption of electricity in a house but the electric home appliance consumption records in a households are not. To build the data, we must collect the usage of every appliances in a house and the information of the household which live in the house. Unfortunately, it is hard to get the data because of the worry about the breach of privacy. In this paper, we make a scenarios on the electricity consumption pattern of a few households type. Based on the conjecture, we make the power consumption profiles for some home appliances. Comparison to the total electric consumption records for a house, we found our scenarios are quite reasonable.

Prediction for the quantity of wood pellet demand and optimal biomass power generation according to biomass power plant expansion and co-firing plan (바이오매스 발전설비 증설·혼소 계획에 따른 Wood pellet 소요량 예측 및 최적 바이오매스 발전량 연구)

  • kim, Sang-Seon;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.818-826
    • /
    • 2017
  • In accordance with the New and Renewable Energy Supply Statistics, biomass power generation has surged since 2013, and use of wood pellet has the most sharply increased, 696Gwh in 2013, 2,764Gwh in 2014 and 2,512Gwh in 2015. Total domestic wood pellet consumption was 1.48million tons in 2015, of which wood pellets consumed for power generation account for about 1.08million tons, about 73%. In this study, we gained the result that the wood pellet would be consumed 2.61million tons in 2020, 6.85million tons in 2025, 11.39million tons in 2030. We also calculated the optimum biomass power generation, on the premise that the power plant co-fire 50% biomass, and the result was that 2.26million tons of wood pellets should be produced domestically in 2021 to operate the present licensed wood pellet power plant from this study.

Development and Application of Reliability Index based on Hydraulic Uniformity in Water Distribution Networks (상수관망의 수리학적 균등성을 이용한 신뢰도 지표의 개발 및 적용)

  • Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.6-6
    • /
    • 2019
  • 상수관망시스템은 공급원으로부터 수요처까지의 용수공급을 위해 구축된 관수로 기반의 사회기반시설물로서, 주로 생활 및 산업 용수를 공급하므로 대규모 사회 경제적 피해를 방지하기 위해서는 안정적인 용수공급 능력이 요구된다. 네트워크의 다양한 특성에 의해 표현되는 상수관망시스템의 신뢰도(reliability)는 크게 시스템 내 구성요소의 안정성(mechanical reliability)과 용수공급의 기능적 안정성(hydraulic reliability)으로 구분할 수 있다. 특히, 시스템의 용수공급 안정성에 주목한 수리학적 신뢰도 연구는 많은 연구자들에 의해 지속적으로 수행된 바 있으며, 다양한 평가방법 및 지표들이 제시되어 활용 중에 있다. 기존의 수리학적 신뢰도 지표들은 주로 수요절점(demand node)에서의 공급가능 수량 및 수압을 바탕으로 산정되었다. 그러나, 절점(node)에서의 공급 상태는 결과에 해당하며, 원인 분석을 위해서는 관로(pipe)의 배치 및 규격을 분석해야 하는 번거로움이 존재한다. 이러한 단점을 보완하기 위해, 본 연구에서는 직접 관로(pipe)의 공급 특성을 분석하여 네트워크의 신뢰도를 평가함으로써, 신뢰도 저하의 원인 분석 및 시스템 개선에 효율적으로 활용할 수 있는 신뢰도 지표를 산정하고자 하였다. 본 연구에서는 상수관로 내 수리학적 기울기가 전반적으로 균등할수록 설계 비용대비 공급 신뢰도, 즉 용수공급 효율이 개선되는 특징을 바탕으로, 네트워크 내 총 에너지 손실로부터 각 관로의 길이, 유량 등의 특성을 고려한 등가 수리경사(Equivalent hydraulic gradient)를 유도하여 모든 관로의 적정 수리경사로 제안하였다. 따라서 각 관로의 실제 수리경사를 대상으로 관로별 수리학적 균등성 지수(pipe hydraulic uniformity index)를 산정하였으며, 더 나아가 전체 시스템의 균등성 지수(system hydraulic uniformity index)를 산정하였다. 제안된 신뢰도 지표는 가상의 네트워크에서 지역 내 용수 사용량이 증가하는 등 용수공급 안정성을 저해하는 몇 가지 시나리오를 바탕으로 검증하였으며, 또한 기존 지표들의 신뢰도 평가 결과와 비교, 분석하였다. 본 연구는 향후 네트워크 최적 설계의 목적함수로 활용하거나, 네트워크의 보강계획 수립에 기여할 것으로 기대된다.

  • PDF

An Analysis of Sectoral GHG Emission Intensity from Energy Use in Korea (기후변화 협약 대응을 위한 산업별 온실가스 배출 특성 분석)

  • Chung, Whan-Sam;Tohno, Susumu;Shim, Sang-Yul
    • Journal of Korea Technology Innovation Society
    • /
    • v.11 no.2
    • /
    • pp.264-286
    • /
    • 2008
  • In 2006, the share of energy in Korea amounted to 28% from the total import, 97% from overseas dependency, and 83% for the national Greenhouse Gas (GHG) emission in 2004. Thus, from the aspects of economical and environmental policies, an energy analysis is very important, for the industry to cope with the imminent pressure for climate change. However, the estimation of GHG gas emissions due to an energy use is still done in a primitive way, whereby each industry's usage is multiplied by coefficients recommended from international organizations in Korea. At this level, it is impossible to formulate the prevailing logic and policies in face of a new paradigm that seeks to force participation of developing countries through so called post-Kyoto Protocol. In this study, a hybrid energy input-output (E-IO) analysis is conducted on the basis of the input-output(IO) table of 2000 issued by the Bank of Korea in 2003. Furthermore, according to economic sectors, emission of the GHG relative to an energy use is characterized. The analysis is accomplished from four points of view as follows: 1) estimating the GHG emission intensity by 96 sectors, 2) measuring the contribution ratio to GHG emissions by 14 energy sources, 3) calculating the emission factor of 3 GHG compounds, and 4) estimating the total amount of national GHG emission. The total amount estimated in this study is compared with a national official statistical number. The approach could be an appropriate model for the recently spreading concept of a Life Cycle Analysis as it analyzes not only a direct GHG emission from a direct energy use but also an associated emission from an indirect use. We expect this model can provide a form for the basis of a future GHG reduction policy making.

  • PDF

Structural Decomposition Analysis on Changes in Industrial Energy Use in Korea, 1980~2000 (구조분해분석을 통한 국내 산업별 에너지 소비 변화요인 연구)

  • Kim, Jin-Soo;Heo, Eunnyeong
    • Environmental and Resource Economics Review
    • /
    • v.14 no.2
    • /
    • pp.257-290
    • /
    • 2005
  • Korean energy use in industrial sector has increased more rapidly than other sectors during 1980~2000 periods. Relatively higher increases in industrial sector energy consumption raise questions whether government policy of rationalization of industrial energy use has been effective. In this study, we use 80-85-90 and 90-95-00 constant price input-output table to analyze increases in industrial energy use. Using an adjusted version of structural decomposition model introduced by Chen and Rose (1990), we decompose Changes of energy use into 17 elements. We classify entire industry sector into 32 sectors including four energy sectors (coal and coal products, refined petroleum, electricity and town gas). We then analyze changes of energy use by industrial level to check differences among industrial energy demand structures. Finally, we compare three industries, electronic product manufacturing, metal manufacturing and construction, that represent technology and capital intensive, energy and material intensive and labor and capital intensive industry. As results, we find that high energy using industries make the most effort to reduce energy use. Primary metal, petrochemical and mon-metal industries show improvements in elements such as energy and material productivity, energy and material imports, energy substitution and material substitutions towards energy saving. These results imply that although those industries are heavy users of energy, they put the best effort to reduce energy use relative to other industries. We find various patterns of change in industrial energy use at industrial level. To reduce energy use, electronic product manufacturing industry needs more effort to improve technological change element while construction industry needs more effort to improve material input structure element.

  • PDF

Environmental Analysis of Waste Cable Recycling Process using a Life Cycle Assessment Method (전과정평가기법을 활용한 폐전선 재자원화 공정의 환경성 평가)

  • Jang, Mi-Sun;Seo, Hyo-Su;Park, Hee-Won;Hwang, Yong-Woo;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • The development of the electrical, electronic, and telecommunication industries has increased the share of electricity in total energy consumption. With the enforcement of the Act on the Promotion of the Development, Use, and Diffusion of New and Renewable Energy in 2021, the mandatory supply ratio of new and renewable energy is expected to expand, and the amount of waste cables generated in the stage of replacing and discarding cables used in the industry is also expected to increase. The purpose of this study was to quantify the environmental burden of waste cable recycling through the life cycle assessment (LCA) method. The results showed that the higher the amount of glue contained in the waste cable, the greater was the amount of fine dust and greenhouse gases generated. In addition, by assigning weights to 10 environmental burden items, it was confirmed that the marine aquatic eco-toxicity potential (MAETP) and human toxicity potential (HTP) had the greatest environmental burden. The main causes were identified as heptane and ethanol, which were the glue contained in the waste cable and the cleaning solutions used to remove them. Therefore, it is necessary to refrain from using glue in the cable production process and reduce the environmental burden by reducing the use of waste cable cleaning solutions used in the recycling process or using alternative materials.