• Title/Summary/Keyword: 촉매 변환기

Search Result 58, Processing Time 0.025 seconds

An Analytical and Experimental Study on the Improvement of Performances of a Gasoline Engine of the Light Passenger Car (First Paper) (경승용차용 가솔린 기관의 성능향상에 관한 이론 및 실험적 연구(제1보)- 성능 실험을 중심으로-)

  • 윤건식;서문진;우석근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.40-50
    • /
    • 2000
  • In this study, as a means of increasing engine power, turbocharging was applied to the gasoline engine of a light passenger car which was originally naturally aspirated. Also the catalytic convertor was applied to improve the exhaust emission characteristics. The comparison of the performance characteristics between the burbocharged engine with catalytic convertor and the naturally aspirated engine was made over the wide range of operating conditions. The results showed considerable increase of the output performances at full load condition by trubocharging while slight losses were observed at part load conditions.

  • PDF

Synthesis of Amino-type Anion Exchanger from Acrylic Acid Grafted Polypropylene Nonwoven Fabric and Its Ion-Exchange Property (아크릴산 그라프트 폴리프로필렌 부직포로부터 아민형 음이온 교환체의 합성 및 이온교환특성(I))

  • Park, Hyun-Ju;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.527-534
    • /
    • 2006
  • The purpose of this study is the development of more effective filter-type polymer adsorbent for removal of anionic pollutants from wastewater. In order to synthesize the polymer adsorbent that possesses anionic exchangeable function, carboxyl(-COOH) group of PP-g-AA nonwoven fabric was converted into amine($-NH_2$) group by the chemical modification using diethylene triamine(DETA). FT-IR data indicate that amine group was introduced into PP-g-AA through amidation of grafted acrylic acid by reaction with DETA. The degree of amination increased with increase in the reaction time and temperature of the chemical modification process, and was significantly improved by the pre-swelling treatment of PP-g-AA with solvent and addition of metal chlorides as a catalyst in following order as $NH_4OH>MeOH{\geq}HCl{\geq}H_2O\;and\;AlCl_3>FeCl_3{\geq}SnCl_2{\gg}ZnCl_2{\geq}FeCl_2$, respectively. However, the addition of catalyst limited the reusability of DETA, hence was less useful from the viewpoint of cost effectiveness and waste management. The anion exchange capacity of the aminated PP-g-AA(PP-g-AA-Am) increased with increase in the degree of amination, but it reached maximum value at the degree of amination as about $50{\sim}60%$. The anion exchange capacity of PP-g-AA-Am was higher than those of commercial anion resins.

전기연구소설립을 촉구함

  • 양재권
    • 전기의세계
    • /
    • v.24 no.4
    • /
    • pp.3-5
    • /
    • 1975
  • 우리 인간은 그들이 개발한 과학과 기술에 의하여 자연 중에 존재하는 많은 자원을 그들의 생활에 도움이 되는 물체로 바꾸어 왔고 각종 에너지를 그들이 필요로 하는 형태로 바꾸었으며 또 그들이 사는 환경을 더욱 안락하도록 개조하여 왔다. 인간에 계속해서 현재와 같이 생활상태를 향상시키며 번영을 시도한다면 과학기술개발은 영원히 계속될 것이다. 이 과학기술개발에 관한 노력은 과거에는 가치관의 차이로 국가간의 노력의 차이가 있었으나 현재는 선후진국을 막론하고 과학기술에 의한 공업진흥이 국가사회의 경제개발의 원동력이며 그 생활향상의 열쇠가 된다는 것을 다 깨닫고 있다. 이와 같은 과학기술과 인간생활과의 숙명적인 관계중에서도 전기학술과 인간관계는 타과학과의 관계보다 훨씬 깊은 바가 있다. 우리는 호수에 물의 위치 에너지, 석탄이 가지고 있는 열에너지, 바람이 가지고 있는 운동에너지 등을 비롯하여 최근에 발견된 원자에너지까지도 이를 전기에너지로 변환시켜서 이용하고 있다. 장래 어떠한 에너지가 새로 개발되더라도 전기에너지로 변환되어 현재와 같이 우리 생활에 기여할 것은 틀림없다. 이는 전기에너지의 사용편리성으로 볼 때 이의를 제기할 사람은 없을 것이다. 따라서 각종에너지를 전기에너지로 바꾸는 발전기술과 이 장치의 제조공업, 이를 수요지까지 수송하는 송변전기술과 이 장치의 제조공업, 공장에서 사용되는 전기기기들의 운전사용기술과 가정에서 소요되는 전기기기의 제조공업 이상 전기공업의 여러 방치에 소요되는 원자재의 제조공업 등 소위 전기기술은 인간생활과 절대 불가분의 기술이며 앞으로도 인류의 존재와 더불어 영원한 발전을 계속할 것이다. 전기기술발전없이 인간사회와 국가의 산업발전을 기대한다는 것은 어리석은 일이라 아니할 수 없다. 가까운 장래 우리나라 계통이 당면하여야 할 계통제어에 관한 몇가지 문제를 고찰하고저 한다. 단 개개의 문제에 관한 구체적인 해석 또는 검토에 관하여는 다음 기회에 미루기로하고, 우선 여기서는 당면문제로서 대처하지 않으면 안될 자동주파수제어문제및 계통의 경제운용문제만에 한정하여, 이것을 우리나라의 현상과 관련시켜 개설하고, 이들의 자동화에 관한 기본적인 문제를 간단히 적어 보겠다. 가능하다. 제작완료된 ASIC은 기능시험을 완료했으며 실제 line-of-sight(LOS) 시스템 구현에 적용중이다. 시대를 살아 갈 회원들이다. '컨텐츠의 시대'가 개막되는 것이며, 신세기통신과 SK텔레콤은 선의의 경쟁 과 협력을 통해 이동인터넷 서비스의 컨텐츠를 개발해 나가게 될 것이다. 3배가 높았다. 효소 활성에 필수적인 물의 양에 따른 DIAION WA30의 라세미화 효율에 관하여 실험한 결과, 물의 양이 증가할수록 그 효율은 감소하였다. DIAION WA30을 라세미화 촉매로 사용하여 아이소옥탄 내에서 라세믹 나프록센 2,2,2-트리플로로에틸 씨오에스터의 효소적 DKR 반응을 수행해 보았다. 그 결과 DIAION WA30을 사용하지 않은 경우에 비해 반응 전환율과 생성물의 광학 순도는 급격히 향상되었다. 전통적 광학분할 반응의 최대 50%라는 전환율의 제한이 본 연구에서 찾은 DIAION WA30을 첨가함으로써 성공적으로 극복되었다. 또한 고체 염기촉매인 DIAION WA30의 사용은 라세미화 촉매의 회수 및 재사용이 가능하게 해준다.해준다.다. TN5 세포주를 0.2 L 규모 (1 L spinner flask)oJl에서 세포간의 응집현상 없이 부유배양에 적응,배양시킨 후 세포성장 시기에 따른 발현을 조사한 결과 1 MOI의

  • PDF

Intensified Low-Temperature Fischer-Tropsch Synthesis Using Microchannel Reactor Block : A Computational Fluid Dynamics Simulation Study (마이크로채널 반응기를 이용한 강화된 저온 피셔-트롭쉬 합성반응의 전산유체역학적 해석)

  • Kshetrimatum, Krishnadash S.;Na, Jonggeol;Park, Seongho;Jung, Ikhwan;Lee, Yongkyu;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.92-102
    • /
    • 2017
  • Fischer-Tropsch synthesis reaction converts syngas (mixture of CO and H2) to valuable hydrocarbon products. Simulation of low temperature Fischer -Tropsch Synthesis reaction and heat transfer at intensified process condition using catalyst filled single and multichannel microchannel reactor is considered. Single channel model simulation indicated potential for process intensification (higher GHSV of $30000hr^{-1}$ in presence of theoretical Cobalt based super-active catalyst) while still achieving CO conversion greater than ~65% and $C_{5+}$ selectivity greater than ~74%. Conjugate heat transfer simulation with multichannel reactor block models considering three different combinations of reactor configuration and coolant type predicted ${\Delta}T_{max}$ equal to 23 K for cross-flow configuration with wall boiling coolant, 15 K for co-current flow configuration with subcooled coolant, and 13 K for co-current flow configuration with wall boiling coolant. In the range of temperature maintained (498 - 521 K), chain growth probability calculated is desirable for low-temperature Fisher-Tropsch Synthesis.

Colorless and Transparent Polyimide Films from Poly(amic acid)s with Cross-linkable Anhydride End (가교 반응이 가능한 말단 무수물을 이용한 무색투명한 폴리이미드 필름)

  • Min, Ung-Ki;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.495-500
    • /
    • 2010
  • Crosslinked PI films were synthesized from 4,4'-(hexafluoro isopropylidene)diphthalic anhydride (6FDA) and bis[4-(3-aminophenoxy) phenyl] sulfone(BAPS) with various ratios of the reactive monomer cis-4-cyclohexene-1,2-dicarboxylic anhydride(CDBA). We prepared crosslinked poly(amic acid) (PAA) using a 0.1 wt% Grubbs catalyst as a crosslinking agent. The crosslinked PAA was heat-treated at different temperatures to give PI films. The thermo-mechanical properties and optical transparency of the PI films were investigated. The thermal properties of the PI films were examined using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), thermo-mechanical analysis(TMA), and universal tensile machine(UTM), and their optical transparencies were investigated using UV-vis. spectrophotometry. The thermomechanical properties of the PI films improved with increasing CDBA content. However, the optical transparency of the PI films decreased slightly with increasing CDBA content.

Reliability of a Cobalt Silicide on Counter Electrodes for Dye Sensitized Solar Cells (코발트실리사이드를 이용한 염료감응형 태양전지 상대전극의 신뢰성 평가)

  • Kim, Kwangbae;Park, Taeyeul;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • Cobalt silicide was used as a counter electrode in order to confirm its reliability in dye-sensitized solar cell (DSSC) devices. 100 nm-Co/300 nm-Si/quartz was formed by an evaporator and cobalt silicide was formed by vacuum heat treatment at $700^{\circ}C$ for 60 min to form approximately 350 nm-CoSi. This process was followed by etching in $80^{\circ}C$-30% $H_2SO_4$ to remove the cobalt residue on the cobalt silicide surface. Also, for the comparison against Pt, we prepared a 100 nm-Pt/glass counter electrode. Cobalt silicide was used for the counter electrode in order to confirm its reliability in DSSC devices and maintained for 0, 168, 336, 504, 672, and 840 hours at $80^{\circ}C$. The photovoltaic properties of the DSSCs employing cobalt silicide were confirmed by using a simulator and potentiostat. Cyclic-voltammetry, field emission scanning electron microscopy, focused ion beam scanning electron microscopy, and energy dispersive spectrometry analyses were used to confirm the catalytic activity, microstructure, and composition, respectively. The energy conversion efficiency (ECE) as a function of time and ECE of the DSSC with Pt and CoSi counter electrodes were maintained for 504 hours. However, after 672 hours, the ECEs decreased to a half of their initial values. The results of the catalytic activity analysis showed that the catalytic activities of the Pt and CoSi counter electrodes decreased to 64% and 57% of their initial values, respectively(after 840 hours). The microstructure analysis showed that the CoSi layer improved the durability in the electrolyte, but because the stress concentrates on the contact surface between the lower quartz substrate and the CoSi layer, cracks are formed locally and flaking occurs. Thus, deterioration occurs due to the residual stress built up during the silicidation of the CoSi counter electrode, so it is necessary to take measures against these residual stresses, in order to ensure the reliability of the electrode.

A Numerical Study of Trasient Behavior In a Monolithic Catalytic Converter (일체형 촉매변환기의 비정상 거동의 수치해석적 연구)

  • Bae S. S.;Kang D. J.;Kim S. Y.;Lim M. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.76-81
    • /
    • 1995
  • A numerical procedure for the analysis of transient behavior in a monolithic catalytic converter is presented. The thermal behavior of a monolithic catalytic converter is fully coupled with mass transfer and exothermic reaction between exhaust gases and the catalytic converter. In the present study, all these processes are solved simultaneously. The heat transfer process is approximated by combinging one dimensional convection and conduction and the chemical reaction is also simply modelled by using the concepts of reaction rate and reaction heat. All the partial diffenrential equations for the heat transfer, mass transfer and chemical reactions are appximated by using finite volume method. Resulting algebraic equations are solved using the Newton's method. To see the workability of present numerical method, two well known problems, say step increase and step decrease in the gas inlet temperature, have been calculated. Comparion of present solutions with previous solutions shows a good agreement.

  • PDF

Impact of Ash Deposit on Conversion Efficiency of Wall Flow Type Monolithic SCR Reactor (벽유동 방식 담체를 사용하는 SCR 촉매 반응기에서 재 퇴적이 변환 효율에 미치는 영향에 대한 연구)

  • Park, Soo-Youl
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • SCR (Selective Catalytic Reduction) on DPF (Diesel Particulate Filter) is a multi-functional after-treatment device which integrates soot filtration and DeNOx function into a single can. Because of its advantage in package and cost, the SCR on DPF is considered as a potential candidate for future application. It inherently employes wall flow type monolithic reactor so ash included in exhaust gas may deposit inside the inlet channel of this device. This study is intended to identify the impact of ash deposit on SCR reaction under wall flow type monolithic reactor. Simulation approach is used so relevant species transport equations for wall flow type monolith is derived. These equations can be solved together with momentum conservation equations and give solution for conversion performance. Both ash deposit and clean catalyst case are simulated and comparison of these two cases gives an insight for the impact of ash deposit on conversion performance. Ash deposit can be classified as ash layer and ash plug. and impact of ash deposit is described along with different morphology of ash deposit.

Transformation of Endocrine Disrupting Chemicals (EDCs) by Manganese(IV) Oxide (망간산화물을 이용한 내분비계장애물질의 변환에 관한 연구)

  • Lee, Seung-Hwan;Choi, Yong-Ju;Chung, Jae-Shik;Nam, Taek-Woo;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.44-50
    • /
    • 2009
  • The occurrence of endocrine disrupting compounds (EDCs), chemicals that interfere with human hormone system, are increasing in the freshwater, waste water and subsurface as well. In this study, we determined the reactivity of three EDCs in the presence of birnessite. In aqueous phase, bisphenol A, 2,4-dichlorophenol and 17${\beta}$-estradiol, which possesses phenoxy-OH, were very rapidly transformed by birnessite: up to 99% of initial concentrations (50 mg/L for bisphenol A, 100mg/L for 2,4-dichlorophenol, and 1.5mg/L for 17${\beta}$-estradiol) were destroyed within 60 minutes. Especially, bisphenol A was the most reactive chemical, disappearing by 99% in a few minutes. The reaction occurred on the surface of birnessite, showing a linear increase of first-order kinetic constants with the increase of the surface area of birnessite. In soil slurry phase, the reactivity of birnessiteto EDCs was faster than in aqueous phase probably due to the cross coupling reaction of phenoxy radicals with soil organic matter. Considering the rapid transformation of the EDCs in the both phases, this oxidative cross coupling reaction mediated by birnessite would be an effective solution for the remediation of EDCs in environmental media, especially in soil.

The Availability of Automobile Catalytic Convert of Copper Based on the DFT Calculations of Cu-NO Complexes (Cu-NO 복합체에 대한 DFT 계산에 따른 Cu의 자동차 촉매변환기 적합성)

  • Ha, Kwanga;Lee, Min-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.358-363
    • /
    • 2018
  • The purpose of this study is to show the possibility of using Cu catalyst in removal of $NO_x$ from automobile exhaust which is regarded as the primary source of fine dust PM2.5. The energy and the bond lengths of the three possible structures of Cu-NO complex, which is formed by binding NO molecule to Cu, and the changes in IR and Raman spectra are calculated using MPW1PW91 method on the level of 6-311(+)G(d,p) of basis sets with Gaussian 09 program. As a result, the enthalpy of formation of the Cu-NO complexes are obtained as ${\Delta}H=104.89$, 91.98, -127.48 kJ/mol for the linear, bent, and bridging forms of them, respectively. And the bond lengths between N and O in NO complexes, which becomes longer than NO molecule, indicates that O is easily reduced from Cu-NO. In addition, the Cu-NO complexes using Cu catalyst can be easily measured by infrared or Raman spectroscopy because in the IR and Raman spectra of the NO and Cu-NO complexes the positon and the intensity of bands are definitely different in each vibration mode.