• Title/Summary/Keyword: 촉매 산화

Search Result 1,207, Processing Time 0.024 seconds

Decomposition of Toluene over Transition Metal Oxide Catalysts (전이금속 산화물 촉매를 이용한 톨루엔 분해)

  • Cheon, Tae-Jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.651-656
    • /
    • 2005
  • Toluene, which is emitted from textile process, is considered as an important hazardous air pollutant. In this study, the catalytic activity of transition metal oxides(Cu, Mn, V, Cr, Co, Ni, Ce, Sn, Fe, Sr, Cs, Mo, La, W, Zn)/${\gamma}-Al_2O_3$ catalysts was investigated to carry out the complete oxidation of toluene. The metal catalysts were characterized by XRD-ray diffraction), FE-SEM(Field Emission Scanning Electron Micrograph), BET(Brunauer Emmett Teller) method and TPR(Temperature Programmed Reduction). Among the catalysts, Cu/${\gamma}-Al_2O_3$ was highly promising catalyst for the oxidation of toluene. From the BET results, it seems that the catalytic activity is not correlated to the specific surface area. XRD results indicated that most of catalysts exist as amorphous phase. From the FE-SEM results, it was observed that copper on ${\gamma}-Al_2O_3$ surface was well dispersed among catalysts. The catalytic activity for the toluene oxidation could be explained with that metal oxide catalyst was dispersed well over supports and was attributed to reduction activity in surface of catalysts.

Recent Trends on Catalytic Oxidation of Benzene without or with Ozone over Mn-Based Catalysts (망간 기반 촉매상에서의 벤젠의 산화와 오존산화에 대한 최근 연구 동향)

  • Park, Sung Hoon;Jeon, Jong-Ki;Kim, Sang Chai;Jung, Sang-Chul;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.237-241
    • /
    • 2014
  • Benzene is a hazardous air pollutant, classified as carcinogenic to humans, that requires special management. Benzene exists both indoors and outdoors and the control measure of indoor benzene is different from that of outdoor benzene. The removal of indoor benzene needs to be accomplished at low temperatures (normally below $100^{\circ}C$), while outdoor benzene is usually removed at much higher temperature ($300-400^{\circ}C$) by using catalytic oxidation. This review paper summarizes the recent trend in catalytic treatment of airborne benzene, focusing on catalytic oxidation and catalytic ozone oxidation. Particular attention is paid to Mn-based catalysts for low-temperature oxidation of benzene, which are more economical than the other noble-metal catalysts. Various methods are used to generate more efficient Mn-based catalysts for benzene removal. Ozone oxidation is attracting particularly significant attention because it can remove benzene effectively below $100^{\circ}C$, even at room temperature.

Study on Electrocatalytic Water Oxidation Reaction by Iridium Oxide and Its Bubble Overpotential Effect (산화 이리듐의 물의 산화반응에 대한 버블 과전압 현상과 촉매 특성 연구)

  • Kim, Jeong Joong;Choi, Yong Soo;Kwon, Seong Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.70-73
    • /
    • 2013
  • Iridium oxide is well known as an electrocatalyst for the water oxidation. Recently, Dr. Bard's group observed the electrocatalytic behavior of individual nanoparticle of Iridium oxide using the electrochemical amplification method by detecting the single nanoparticle collisions at the ultramicroelectrode (UME). However, the electrocatalytic current is decayed as a function of time. In this study, we investigated that the reason of electrocatalytic current decay of water oxidation at Iridium oxide nanoparticles. We identified it is due to the bubble overpotential because the cyclic current decay and recovery were synchronized to the oxygen bubble growth and coming away from an Iridium disk electrode.

Base Inhibitor를 이용한 고전도도의 PEDOT박막의 제작

  • Lee, Joon-Woo;Choi, Byoung-Blk;Choi, Sang-Il;Kim, Sung-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.442-442
    • /
    • 2012
  • PEDOT[Poly(3,4-Ethylenedioxythiophene)]박막의 제작은 산화촉매제를 이용한 기상중합(Vapor Phase Polymerization)방법을 통해 최근 활발히 연구되어 지고 있다. 기상중합된 PEDOT박막의 특성은 박막의 중합의 정도와 성장 형상에 따라 그 특성이 크게 좌우된다. PEODT박막의 효율적인 중합에 있어 산화촉매제의 균일한 도포는 매우 중요하다. PEDOT의 효율적인 중합과 균일도포를 위해 산화촉매제에 DUDO와 PEG-PPG-PEG를 첨가한 혼합용액을 제작 VPP방법을 통해 PEDOT박막의 제작을 시도하였다. 그 결과 spin-coating 시 산화촉매 혼합용액의 균일한 도포가 관찰 되었으며 산화촉매제만 사용하여 제작된 박막에 비해 전도도와 막질이 향상된 PEDOT박막이 제작되었다. 이러한 결과는 산화촉매용액에 첨가된 PEG-PPG-PEG와 DUDO의 영향으로 PEG-PPG-PEG는 oxdiant용액의 균일 도포를 도왔으며 Inhibitor로 작용하는 DUDO는 PEDOT성장에 있어 불균일 결정성장을 억제하여 조밀한 PEDOT 박막 성장을 도운 것으로 생각된다. PEDOT 박막의 특성평가에는 Field Emission-Scanning Electron Microscopy, 4-Pointprobe, Optical microscopy 등이 사용되었다. 이러한 고전도도의 PEDOT박막을 OTFT의 전극소재로 사용한다면 OTFT소자의 성능 향상에있어 크게 기여 할 것으로 기대된다.

  • PDF

Preparation of CuO-CeO2 mixed oxide catalyst by sol-gel method and its application to preferential oxidation of CO (졸-겔법에 의한 CuO-CeO2 복합 산화물 촉매의 제조 및 CO의 선택적 산화반응에 응용)

  • Hwang, Jae-Young;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.883-891
    • /
    • 2017
  • For the preferential oxidation of CO contained in the fuel of polymer electrolyte membrane fuel cell (PEMFC), CuO-$CeO_2$ mixed oxide catalysts were prepared by the sol-gel and co-precipitation methods to replace noble metal catalysts. In the catalyst preparation by the sol-gel method, Cu/Ce ratio and hydrolysis ratio were changed. The catalytic activity of the prepared catalysts was compared with the catalytic activity of the noble metal catalyst($Pt/{\gamma}-Al_2O_3$). Among the catalysts prepared with different Cu/Ce ratios, the catalyst whose Cu/Ce ratio was 4:16 showed the highest CO conversion (90%) and selectivity (60%) at $150^{\circ}C$. As the hydrolysis ratio was increased in the catalyst preparation, surface area increased, and catalytic activity also increased. The highest CO conversions with the CuO-$CeO_2$ mixed oxide catalyst prepared by the co-precipitation method and the noble metal catalyst (1wt% $Pt/{\gamma}-Al_2O_3$) were 82 and 81% at $150^{\circ}C$, respectively, whereas the highest CO conversion with the CuO-$CeO_2$ mixed oxide catalyst prepared by the sol-gel method was 90% at the same temperature. This indicates that the catalyst prepared by the sol-gel method shows higher catalytic activity than the catalysts prepared by the co-precipitation method and the noble metal catalyst. From the CO-TPD experiment, it was found that the catalyst having CO desorption peak at a lower temperature ($140^{\circ}C$) revealed higher catalytic activity.

A Design Approach to $CrO_x/TiO_2$-based Catalysts for Gas-phase TCE Oxidation (기상 TCE 제거반응용 $CrO_x/TiO_2$계 복합 산화물 촉매 디자인)

  • Yang, Won-Ho;Kim, Moon-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.368-375
    • /
    • 2006
  • Single and complex metal oxide catalysts supported onto a commercial DT51D $TiO_2$ have been investigated for gas-phase TCE oxidation in a continuous flow type fixed-bed reaction system to develop a better design approach to catalysts for this reaction. Among the $TiO_2$-supported single metal oxides used, i.e., $CrO_x,\;FeO_x,\;MnO_x,\;LaO_x,\;CoO_x,\;NiO_x,\;CeO_x\;and\;CuO_x$, with the respective metal contents of 5 wt.%, the $CrO_x/TiO_2$ catalyst was shown to be most active for the oxidative TCE decomposition, depending significantly on amounts of $CrO_x\;on\;TiO_2$. The use of high $CrO_x$ loadings greater than 10 wt.% caused lower activity in the catalytic TCE oxidation, which is probably due to production of $Cr_2O_3$ crystallites on the surface of $TiO_2$. $CrO_x/TiO_2$-supported $CrO_x$-based bimetallic oxide catalysts were of particular interest in removal efficiency for this TCE oxidation reaction at reaction temperatures above $200^{\circ}C$, compared to that obtained with $CrO_x$-free complex metal oxides and a 10 wt.% $CrO_x/TiO_2$ catalyst. Catalytic activity of 5 wt.% $CrO_x-5$ wt.% $LaO_x$ in the removal reaction was similar to or slightly higher than that acquired for the $CrO_x$-only catalyst. Similar observation was revealed for 5 wt.% $CrO_x$-based bimetallic oxides consisting of either 5 wt.% $MnO_x,\;CoO_x,\;NiO_x\;or\;FeO_x$. These results represent that such $CrO_x$-based bimetallic systems for the catalytic TCE oxidation on significantly minimize the usage of $CrO_x$ that is well known to be one of very toxic heavy metals, and offer a very useful technique to design new type catalysts for reducing chlorinated volatile organic substances.

Catalytic Oxidation of Methane Using the Manganese Catalysts (망간촉매를 이용한 메탄의 산화반응)

  • Jang, Hyun-Tae;Cha, Wang-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.537-544
    • /
    • 2011
  • This work was conducted to investigate the oxidation characteristics of methane having the highest ignition temperature among the other hydrocarbon gases using transition metal catalysts. The catalyst used for methane oxidation was manganese oxide having a various oxidation number, such as MnO, $MnO_2$, $Mn_2O_3$, $Mn_3O_4$, $Mn_4O_5$. The manganese oxide(MnxOy) catalyst is impregnated on $TiO_2$, $Al_2O_3$ for methane oxidation. To enhanced both of activity and life time of catalysts, Ni and Co was used as a promoter. In this study, various co-catalysts were synthesized by using excess wet impregnation method. The effect of reaction temperature and space velocity was measured to calculate the activity of catalysts such as, activation energy of $T_{50}$, and $T_{90}$. The life time of bi-metallic manganese mixture, such as Mn-Co and Mn-Ni catalysts, were increased more 10 % than manganese oxide catalyst, but activity of those was decreased slightly.

Characterization of CO Oxidatation Using the Cu, Mn impregated zeolit 13X catalyst (Cu, Mn 함침 제올라이트13X 촉매의 CO 산화 전환 반응특성)

  • Jung, Eui-Min;Kim, Dae-Kyung;Lee, Joo-Bo;Peng, Mei Mei;Song, Sung-Hwa;Moon, Mi-Mi;Jeon, Lee-Seul;Ahn, Seon-Hee;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.30-32
    • /
    • 2012
  • 본 연구에서는 Cu, Mn을 함침 시킨 상용 제올라이트13X 촉매에 CO 산화 전환 반응에 영향을 연구하였다. 촉매 제조는 담지량별로 Cu, Mn을 서로 다른 비율로 물리 혼합하여 상용 제올라이트에 담지하였다. 함침방법은 과잉용액 함침법을 사용하였고, 건조 후 공기분위기에서 소성하여 산화물 형태로 담지하였다. 기본적인 촉매 특성은 X-선 회절분석, 질소흡탈착 등온곡선을 이용하여 기공크기, 기공부피, 비표면적을 구하였으며, FT-IR, 주사현미경, $NH_3$-TPD/TPR, EDX로 특성을 분석하였다. 촉매 산화반응 실험은 고정층 반응기에서 수행하였으며, 외경1/4 inch(내경 4 mm)석영관에 촉매를 중진하고 Gas Chromatograph로 배출가스를 측정하여 Cu-Mn 제올라이트 촉매의 일산화탄소 산화반응을 연구하였다. 일산화탄소 농도, 온도 및 공간속도, Cu-Mn 함량 비율에 따른 산화반응 실험을 수행하여 최적 산화조건과 촉매를 도출하였다.

  • PDF

A study on the NO oxidation using dry oxidant produced by the catalytic conversion of H2O2 (H2O2 촉매 전환에 의해 생성된 건식산화제를 이용한 NO 산화에 관한 연구)

  • Jang, Jung Hee;Han, Gi Bo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.100-109
    • /
    • 2016
  • In this study, the NO oxidation using dry oxidant produced by catalytic $H_2O_2$ conversion was conducted. It was shown that Mn-based $Fe_2O_3$ support catalyst has the best performance in the catalytic $H_2O_2$ conversion and its combined-NO oxidation. The reaction characteristics of NO oxidation was investigated by the various operation conditions such as $H_2O_2$ amount, oxidation temperature and space velocity. As a results, the oxidation efficiency of NO greatly depends on the oxidation reaction temperature, $H_2O_2$ amount and space velocity. The performance of NO oxidation was increased with increasing the oxidation temperature and $H_2O_2$ amount. Also, the performance of NO oxidation was decreased with increasing the space velocity.

NOx removal of Mn-Cu-TiO2 and V/TiO2 catalysts for the reaction conditions (반응조건에 대한 Mn-Cu-TiO2촉매와 V/TiO2촉매의 탈질 특성)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.713-719
    • /
    • 2016
  • The NOx conversion properties of Mn-Cu-$TiO_2$ and $V_2O_5$/$TiO_2$ catalysts were studied for the selective catalytic reduction (SCR) of NOx with ammonia. The performance of the catalysts was investigated in terms of their $NOx$ conversion activity as a function of the reaction temperature and space velocity. The activity of the Mn-Cu-$TiO_2$ catalyst decreased with increasing reaction temperature and space velocity. However, the activity of the $V_2O_5$/$TiO_2$ catalyst increased with increasing reaction temperature. High activity of the Mn-Cu-$TiO_2$ catalyst was observed at temperatures below $200^{\circ}C$. H2-TPR and XPS analyses were conducted to explain these results. It was found that the activity of the Mn-Cu-$TiO_2$ catalyst was influenced by the thermal shock caused by the change of the initial reaction temperature, whereas the $V_2O_5$/$TiO_2$ catalyst was not affected by the initial reaction temperature. In the case of catalyst C, the $NO_x$ conversion efficiency decreased with increasing space velocity. The decrease in the $NO_x$ conversion efficiency with increasing space velocity was much less for catalyst D than for catalyst C.