• Title/Summary/Keyword: 촉감/햅틱

Search Result 61, Processing Time 0.022 seconds

A Study on VR Based Training System Contents Test Method (가상현실 기반 훈련시스템 콘텐츠 시험방법에 관한 연구)

  • Lee, Gyungchang;Cha, Moohyun;Youn, Cheong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.486-489
    • /
    • 2016
  • 가상현실 기반 훈련시스템은 3D 모델링 기법으로 개발되어 실시간 렌더링(Realtime Rendering)되는 훈련용 콘텐츠와 운동감 제공을 위한 모션플랫폼, 촉감 제공을 위한 햅틱장치 등 다양한 하드웨어를 이용하여 인간 감각에 대한 모의 체험환경을 제공함으로써 높은 훈련 몰입감을 제공한다. 훈련시스템의 구성요소 중 하드웨어들은 설계 성능을 바탕으로 정량적 시험평가로서 검증(Verification)과 확인(Validation)이 가능하나, 훈련환경에 대한 사실적 가시화가 요구되는 훈련용 콘텐츠는 시현을 위한 실시간 렌더링 성능 등의 정량적 시험평가 만으로 검증과 확인에 어려움이 많다. 본 연구에서는 일반 소프트웨어와 콘텐츠 소프트웨어 테스팅 요소 차이와 상용게임 콘텐츠와 훈련용 콘텐츠의 차이점을 분석하고, 훈련용 콘텐츠의 정량적 시험평가를 위한 명세서의 작성과 활용을 제안한다.

Adaptive Mass-Spring Method for the Synchronization of Dual Deformable Model (듀얼 가변형 모델 동기화를 위한 적응성 질량-스프링 기법)

  • Cho, Jae-Hwan;Park, Jin-Ah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Traditional computer simulation uses only traditional input and output devices. With the recent emergence of haptic techniques, which can give users kinetic and tactile feedback, the field of computer simulation is diversifying. In particular, as the virtual-reality-based surgical simulation has been recognized as an effective training tool in medical education, the practical virtual simulation of surgery becomes a stimulating new research area. The surgical simulation framework should represent the realistic properties of human organ for the high immersion of a user interaction with a virtual object. The framework should make proper both haptic and visual feedback for high immersed virtual environment. However, one model may not be suitable to simulate both haptic and visual feedback because the perceptive channels of two feedbacks are different from each other and the system requirements are also different. Therefore, we separated two models to simulate haptic and visual feedback independently but at the same time. We propose an adaptive mass-spring method as a multi-modal simulation technique to synchronize those two separated models and present a framework for a dual model of simulation that can realistically simulate the behavior of the soft, pliable human body, along with haptic feedback from the user's interaction.

  • PDF

Needle Insertion Force of Biological Soft Tissue for Haptic based Intravenous Injection Simulator (햅틱 기반 정맥주사 시뮬레이터를 위한 생체조직 바늘 삽입력)

  • Ahn, Bum-Mo;Jung, Eun-Young;Lee, Young-Ho;Lim, Yong-Soo;Park, Rae-Woong;Kim, Jung;Park, Dong-Kyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.222-228
    • /
    • 2012
  • Haptics and virtual reality are rapidly growing technologies in medical fields. Physicians and nurses can benefit from medical simulation via training and acquire surgical and clinical techniques. In this paper, the research on needle insertion force of biological tissue for haptic based intravenous injection simulator was carried out. We built the setup for needle insertion (intravenous injection) experiments and performed the experiments on live pigs. The force responses against needle insertion were measured using the experimental setup. In addition, the modeling of needle insertion force was carried out with the experimental results and numerical models via nonlinear least-squares method. The results presented in this paper indicate that the developed models can be applied not only to estimate the force feedback during intravenous injection procedure but also to improve the overall training quality of the medical simulator.

posVibEditor: Authoring Tool for Designing Vibrotactile Patterns in Mobile Devices (posVibEditor: 모바일 기기에서 진동촉감 패턴의 디자인 저작 도구)

  • Ryu, Jong-Hyun;Choi, Seung-Moon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.256-261
    • /
    • 2008
  • We developed an authoring tool for designing vibrotactile patterns quickly and easily by using the drag-and-drop paradigm in mobile devices. Designed vibrotactile patterns are registered into a data pool in the XML format, improving the reusability and extensibility of vibrotactile patterns. A multi-channel timeline interface is also incorporated to provide time-synchronized pattern editing for multiple vibration patterns (for multiple vibration actuators). In addition, an internal vibration player is embedded in the authoring tool in order to evaluate the patterns on the spot. A transform function for perceptually transparent vibration rendering can also be set in the editor. Although the authoring tool was developed for mobile devices, it can be used for other applications such as haptic interaction m virtual reality.

  • PDF

Human body learning system using multimodal and user-centric interfaces (멀티모달 사용자 중심 인터페이스를 적용한 인체 학습 시스템)

  • Kim, Ki-Min;Kim, Jae-Il;Park, Jin-Ah
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.85-90
    • /
    • 2008
  • This paper describes the human body learning system using the multi-modal user interface. Through our learning system, students can study about human anatomy interactively. The existing learning methods use the one-way materials like images, text and movies. But we propose the new learning system that includes 3D organ surface models, haptic interface and the hierarchical data structure of human organs to serve enhanced learning that utilizes sensorimotor skills.

  • PDF

Development of a New Miniature Actuator providing both Kinesthetic and Vibrotactile Feedback for Haptic Interface (근감과 진동촉감 피드백을 제공하는 햅틱 인터페이스용 새로운 소형 액추에이터의 개발)

  • Pyo, Dongbum;Ryu, Semin;Han, Byung-Kil;Kwon, Dong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.143-149
    • /
    • 2013
  • This paper presents a new miniature haptic display to convey ample haptic information to a user of a handheld interface. There are buttons on interfaces or general electronic devices, but existing buttons provide haptic feedback of only one passive pattern to a user. Because humans perceive tactile and kinesthetic information simultaneously when they handle objects the proposed actuator provides both sensations at once. It is able to generate various levels of kinesthetic sensations when pressing a button under diverse situations. Also, vibrotactile feedback can be delivered for exciting haptic effects with numerous patterns. Its performance was evaluated in accordance with the resistive force by changing the intensity of the input current. Experiments show that the proposed actuator has the ability to provide numerous haptic sensations for more realistic and complex haptic experiences.

A Vibrotactile, Kinesthetic, and Thermal device for Developmental Disorder Children (발달장애아동을 위한 진동감, 굳기감, 온열감 장치)

  • Im, Tami;Yoon, Inho;Kim, Sang-Youn;Jeong, Goo-cheol
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1435-1441
    • /
    • 2017
  • The primary goals of this paper are to design an interactive education platform conveying a variety of haptic sensations to developmental disorder children when they touch the education platform. The proposed interactive education platform is composed of a kinesthetic module, a vibrotactile module, a thermal module. and a controller. The design focuses of the proposed education platform were to create sufficiently large kinesthetic forces, vibrations, and temperatures and to convey them to users. We have conducted experiments for evaluating the proposed system and found out three modules function safely and effectively as an educational platform.

Tactile Display to Render Surface Roughness for Virtual Manufacturing Environment (가상제조환경에서 제품의 표면 거칠기 전달을 위한 촉각 디스플레이)

  • Lee, Dong-Jun;Park, Jae-Hyeong;Lee, Wonkyun;Min, Byung-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • In smart factories, the entire manufacturing process from design to the final product is simulated in a virtual manufacturing environment and optimized before starting production. Suppliers and customers make decisions based on the simulation results. Therefore, effective rendering of the information of the virtual products to suppliers and customers is essential for this manufacturing paradigm. In this study, a method of rendering the surface roughness of the virtual products using a tactile display is presented. A tactile display device comprising a $3{\times}3$ array of individually controlled piezoelectric stack actuators is constructed. The surface topology of the virtual products is rendered directly by controlling the piezoelectric stack actuators. A series of experiments is performed to evaluate the performance of the tactile display device. An electrical discharge machined surface is rendered using the proposed method.

Development of a Haptic System for Grasp Force Control of Underactuated Prosthetics Hands (과소 구동 전동의수의 파지력 제어를 위한 햅틱 시스템 개발)

  • Lim, Hyun Sang;Kwon, Hyo Chan;Kim, Kwon Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.415-420
    • /
    • 2017
  • Underactuated prosthetic hands are relatively light and economical. In this work, an economical grasping force control system is proposed for underactuated prosthetic hands with adaptive grasp capability. The prosthetic hand is driven by a main cable based on a set of electromyography sensors on the forearm of a user. Part of the main cable tension related to grasping force is fed back to the user by a skin-mounted vibrator. The proper relationship between the grasping force and the vibrator drive voltage was established and prototype tests were performed on a group of users. Relatively accurate grasping force control was achieved with minimal training of users.

Tactile Navigation System using a Haptic Device (햅틱 디바이스를 이용한 촉감형 네비게이션 시스템)

  • Lee, Dong-Hyuk;Noh, Kyung-Wook;Kang, Sun Kyun;Kim, Hyun Woo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.807-814
    • /
    • 2014
  • In this paper, we proposed a haptic navigation system which used the tactile data for the user guides of the mobile robot to the reference point via tele-operation in unknown blind environment. This navigation system can enable a mobile robot to avoid obstacles and move to the reference point, according to the direction provided by the device guides through a haptic device consisting of a vibration motor in a blind environment. There are a great deal of obstacles in real environments, and so mobile robots can avoid obstacles by recognizing the exact position of each obstacle through the superposition of an ultrasonic sensor. The navigation system determines the direction of obstacle avoidance through an avoidance algorithm that uses virtual impedance, and lets users know the position of obstacles and the direction of the avoidance through the haptic device consisting of 5 vibration motors. By letting users know intuitionally, it lets the mobile robot precisely reach the reference point in unknown blind environment. This haptic device can implement a haptic navigation system through the tactile sensor data.