• Title/Summary/Keyword: 초퍼회로

Search Result 15, Processing Time 0.021 seconds

Synthetic Test Circuit protection design for HVDC Valve Operational test (HVDC Valve Operational Test를 위한 합성시험설비 보호 설계)

  • Kim, Young Woo;Baek, Seung Taek;Lee, Uk Hwa;Chung, Young Ho
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.516-517
    • /
    • 2013
  • 신재생 에너지의 비중 확대와 보급이 늘어남에 따라, 국가 간, 도시 간의 송전이 중요한 이슈로 대두 되고 있다. 위와 같은 요구 조건을 만족시키기 위해서 초고압 직류 송전의 개발이 필요하다. 초고압 직류송전(HVDC)에는 전류형과 전압형으로 나뉘는데. 각 HVDC에서 사용되는 Valve는 실제 운전 전에 여러 가지 방법으로 검증이 필요하다. 합성 시험회로 설비(Synthetic Test Circuit = 이하 STC)는 전류형 HVDC에서 사용되는 주요 전력변환 장치로, Thyristor Valve의 동작을 실제 동작 조건에 맞추어 동작을 시켜, 동작의 신뢰성을 검증하는 시험 설비이다. 본 논문에서는 전류형 HVDC Valve의 Operational Test를 위한 STC의 보호기능에 대해 기술하고 있다. 합성시험회로는 2상 초퍼와 6 펄스 사이리스터 컨버터를 사용하였고 설계된 보호기능은 PSCAD를 사용하여 검증하였다. HVDC Valve Operational Test시 합성시험회로 내에서 발생할 수 있는 사고 상황을 상정하고 그에 따른 보호 기능을 모의하였다.

  • PDF

Design and Control of Braking Chopper Circuit for Ventilation Inverter of Traction Control System (고속전철용 추진제어장치의 냉각용 인버터를 위한 제동초퍼 회로 설계 및 제어)

  • Cho, Sung-Joon
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.314-315
    • /
    • 2011
  • This paper introduces the design and control method of braking chopper circuit which can supply input power to ventilation inverter of traction control system. The DC input voltage from auxiliary block (static inverter) is normally used as an input of ventilation inverter. It converts DC input to AC output voltage to drive cooling fans for traction control system and traction motors. The electrical braking force is very important for high speed train to guarantee safety even though the train is running in the dead section where the pantograph voltage is not supplied. When the high speed train decelerate speed in dead section, the regenerative energy is dissipated by braking resistor. This paper proposed the braking chopper control method to implement rheostatic braking function and the appropriate chopper circuit for supplying voltage source to ventilation inverter during rheostatic braking mode. The proposed chopper circuit makes it possible for traction control system to regenerate power continuously regardless of the existence of pantograph voltage. The feasibility of proposed braking chopper control and circuit were proven by inertia load test and actual train field test.

  • PDF

A Study on the Development of Low Pass Filter for Chopper Gate Control Unit of Electric Rolling Stock (부산도시철도 1호선 전동차 Low Pass Filter 개발연구)

  • Kang, Hyun-Chul;Kim, Hae-Chang;Park, Hee-Chul
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1445-1456
    • /
    • 2011
  • This paper presents the research of Low Pass Filter(hereinafter called "LPF") which is the part of Chopper Gate Control Unit on the electric rolling stock. Chopper Gate Control Unit controling the propulsive equipments of electric rolling stock consists of several electronic parts, PCB, Power Supply, Gate Circuit Amp, Freon Cooling Device, and has been used the parts made by japan manufacturer Mitsubish. But these parts recently have been more broken down and slow down performance because of long-term use, deterioration. Most of the malfunctions are low performance of LPF. Furthermore, it is physically impossible to repair LPF. Because it is molding type part and no longer manufactured. Also it needs high cost for custom-building. Therefore, it is now making up for through self-developed LPF and operating on Busan metro 1st after on-board testing. This research performed the PS Pice simulation testing, analysis of self-developed LPF performance and the wave form characteristic by multi-function synthesizer, spectrum analyzer, oscilloscope.

  • PDF

A Study on 6-pulse-shift Current-source PWM Inverter for Photovoltaic System (태양광발전을 위한 6-pulse-shift 전류형 인버터에 관한 연구)

  • Lim, Joung-Min;Lee, Sang-Hun;Park, Sung-Jun;Moon, Chae-Joo;Chang, Young-Hak;Lee, Man-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.193-200
    • /
    • 2006
  • This paper suggests a 6-pulse-shift converter structure with PWM current-source inverter based on buck-boost configuration to improve the efficiency and to reduce the switching frequency of inverter for photovoltaic generation system, the device can be operated as interface system between solar module system and power system grid without energy storage cell. The circuit has six current-source buck-boost converter which operate chopper part and kas one full bridge inverter which make a decision the polarity of AC output. Therefore, the proposed PWM power inverter has advantages such as the reduction of witching loss and realization of unity power factor operation. The theoretical backgrounds are discussed and the input-output characteristics for the implemented prototype inverter using TMS320F2812 are verified experimentally in this paper.

A Design Of Cross-Shpaed CMOS Hall Plate And Offset, 1/f Noise Cancelation Technique Based Hall Sensor Signal Process System (십자형 CMOS 홀 플레이트 및 오프셋, 1/f 잡음 제거 기술 기반 자기센서 신호처리시스템 설계)

  • Hur, Yong-Ki;Jung, Won-Jae;Lee, Ji-Hun;Nam, Kyu-Hyun;Yoo, Dong-Gyun;Yoon, Sang-Gu;Min, Chang-Gi;Park, Jun-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.152-159
    • /
    • 2016
  • This paper describes an offset and 1/f noise cancellation technique based hall sensor signal processor. The hall sensor outputs a hall voltage from the input magnetic field, which direction is orthogonal to hall plate. The two major elements to complete the hall sensor operation are: the one is a hall sensor to generate hall voltage from input magentic field, and the other one is a hall signal process system to cancel the offset and 1/f noise of hall signal. The proposed hall sensor splits the hall signal and unwanted signals(i.e. offset and 1/f noise) using a spinning current biasing technique and chopper stabilizer. The hall signal converted to 100 kHz and unwanted signals stay around DC frequency pass through chopper stabilizer. The unwanted signals are bloked by highpass filter which, 60 kHz cut off freqyency. Therefore only pure hall signal is enter the ADC(analog to dogital converter) for digitalize. The hall signal and unwanted signal at the output of an amplifer and highpass filter, which increase the power level of hall signal and cancel the unwanted signals are -53.9 dBm @ 100 kHz and -101.3 dBm @ 10 kHz. The ADC output of hall sensor signal process system has -5.0 dBm hall signal at 100 kHz frequency and -55.0 dBm unwanted signals at 10 kHz frequency.