• Title/Summary/Keyword: 초크랄스키

Search Result 41, Processing Time 0.023 seconds

Distribution of Grown-in Defects in the Fast-pulled Czochralski-silicon Single Crystals (고속 인상 초크랄스키 실리콘 단결정에서 성장 결함 분포)

  • 박봉모;서경호;오현정;이홍우;유학도
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.84-92
    • /
    • 2003
  • The fast pulling is easy to modify the distribution of grown-in defects toward fine size, which can be readily removed by additional treatment. In this experiment, The fast pulled crystals with high pulling late over 1.0 mm/min were grown and their grown-in defect distributions were investigated. In our recent developments in the growth of Cz-Si, it could be found that the cooling rate in a specific temperature range and the uniformity of temperature gradient at solid/liquid interface are more important for the formation of grown-in defect than the pulling rate itself. We analyzed these cooling rates and temperature gradients for the various fast pulled crystals and compared them to the observed formation behavior of the grown-in defects. The effective factor (Ω) for the void defect formation was introduced and it could explain the radial distribution of void defects in the fast-pulled crystals effectively.

Optimal Design of Cz Process for Increasing a Productivity of Single Crystal Si Solar Cell Ingot (태양전지용 단결정 실리콘 잉곳 생산성 증대를 위한 초크랄스키 공정 최적 설계)

  • Lee, Eunkuk;Jung, Jae Hak
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.432-437
    • /
    • 2011
  • Recently, industry needs a new design of Czochralski(Cz) process for higher productivity with reasonable energy consumption. In this study, we carried out computational simulations for finding out a new optimal design of Cz process with variables which can be applied in real industry such as location of heater, shape of shield and crucible size. Objective process was Cz process which can be produced 8 inch diameter Si ingot for solar cell and we acquired an optimal design for higher productivity, low power consumption with stable production condition. For higher productivity we also change the crucible diameter from 22 inches to 24 inches with changing insulation thickness only because the process housing size could not be changed in industry.

Measurement of the temperature and velocity fluctuations occurred by the baroclinic instability in the melt for Czochralski crystal growth method (초크랄스키 단결정 성장 멜트에서 baroclinic 불안정에 의해 발생하는 유동과 온도 변동의 측정)

  • 손승석;이경우
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.381-388
    • /
    • 2000
  • The temperature and velocity fluctuations occurred by the baroclinic instability in the melt for Czochralski crystal growth method were experimentally investigated. Wood's metal, which has similar Pr number to the silicon melt, was used as the working fluid and azimuthal velocity was measured using incorporated magnet probe. The azimuthal velocities near the free surface are faster than velocities near the bottom and the rotational velocities near the model crystal become very fast. The results of measured temperature fluctuation as increasing rotation rate were shown that baroclinic instability occurred at the region of Ro<1.01, Ta>$9.63{\times}10^8$. In these region, the fluctuations of temperature and velocity have the same frequency.

  • PDF

Numerical Study of Melt Flow Pattern by Thermal Gradient of the Crucible in the Czochralski Process (초크랄스키법에서 도가니의 온도구배가 유동장에 미치는 영향에 대한 수치해석 연구)

  • Park, Jong-In;Han, Jeong-Whan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.734-739
    • /
    • 2009
  • It is well known that the temperature and the flow pattern of the crystal-melt interface affect the qualities of the single crystal in the Czochralski process. Thus the temperature profile in the growth system is very important information. This work focuses on controlling the temperature of the silicon melt with a thermal gradient of the crucible. Therefore, the side heater is divided into three parts and an extra heater is added at the bottom for thermal gradient. The temperature of the silicon melt can be strongly influenced and controlled by the electric power of each heater.

Finite element analysis for czochralski growth process of sapphire single crystal (사파이어 단결정의 초크랄스키 성장공정에 대한 유한요소분석)

  • Lim, S.J.;Shin, H.Y.;Kim, J.H.;Im, J.I.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.193-198
    • /
    • 2011
  • Recently sapphire crystals are used in LED applications. The Czochralski (CZ) growth process is one of the most important techniques for growing high quality sapphire single crystal. A successful growth of perfect single crystals requires the control of heat and mass transport phenomena in the CZ growth furnace. In this study, the growth processes of the sapphire crystal in an inductively heated CZ furnace have been analyzed numerically using finite element method. The results shown that the high temperature positions moved from the crucible surface to inside the melt and the crystal-melt interface changed to the flat shape when the rpm was increased. Also the crystal-melt interface shape has been influenced by the shoulder shape of the grown crystal during the initial stage.

A Study of Optimum Growth Rate on Large Scale Ingot CCz (Continuous Czochralski) Growth Process for Increasing a Productivity (생산성 증대를 위한 대구경 잉곳 연속 성장 초크랄스키 공정 최적 속도 연구)

  • Lee, Yu-Ri;Roh, Ji-Won;Jung, Jae Hak
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.775-780
    • /
    • 2016
  • Recently, photovoltaic industry needs a new design of Czochralski (Cz) process for higher productivity with reasonable energy consumption as well as solar cell's efficiency. If the process uses the large size reactor for increasing productivity, it is possible to produce a 12-inch, rather than the 8-inch. Also the continuous czochralski process method can be maximized to increase productivity. In this study, it was designed to improve the yield value of ingot with optimal condition which reduce consumption of electrical power. It has increased the productivity of the 12-inch ingot process condition by using CFD simulation. I have found optimal growth rate, by comparing each growth rate the interface shape, Temperature gradient, power consumption. As a result, the optimal process parameters of the growth furnace has been derived to improve for the productivity and to reduce energy. This study will contribute to the improvement of the productivity in the solar cell industry.

A numerical study on the optimum operation condition for axial oxygen concentration in 8 inch silicon growth by cusp MCZ (8인치 실리콘성장을 위한 커스프 MCZ계에서 축방향 산소분포에 대한 연구)

  • 이승철;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.406-417
    • /
    • 1997
  • A numerical study was conducted on the optimum magnetic field intensity and asymmetric factor for uniform axial oxygen concentration in 8 inch silicon single crystal growing process by magnetic Czochralski method. For constant shape of cusp field, a change of coil and crucible position were compared. In case of symmetric cusp field, magnetic field intensity variation shows concave downward with crystal growing for uniform, axial oxygen concentration. A numerical results show similar value of standard deviation of average oxygen concentration for uniform oxygen concentration between coil and crucible position change. In case of asymmetric cusp field. asymmetric factor is increased with crystal growing to have uniform oxygen concentration.

  • PDF

Research for High Quality Ingot Production in Large Diameter Continuous Czochralski Method (대구경 연속성장 초크랄스키법에서 고품질 잉곳 생산을 위한 연구)

  • Lee, Yu Ri;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.4 no.3
    • /
    • pp.124-129
    • /
    • 2016
  • Recently industry has voiced a need for optimally designing the production process of low-cost, high-quality ingots by improving productivity and reducing production costs with the Czochralski process. Crystalline defect control is important for the production of high-quality ingots. Also oxygen is one of the most important impurities that influence crystalline defects in single crystals. Oxygen is dissolved into the silicon melt from the silica crucible and incorporated into the crystalline a far larger amount than other additives or impurities. Then it is eluted during the cooling process, there by causing various defect. Excessive quantities of oxygen degrade the quality of silicone. However an appropriate amount of oxygen can be beneficial. because it eliminates metallic impurities within the silicone. Therefore, when growing crystals, an attempt should be made not to eliminate oxygen, but to uniformly maintain its concentration. Thus, the control of oxygen concentration is essential for crystalline growth. At present, the control of oxygen concentration is actively being studied based on the interdependence of various factors such as crystal rotation, crucible rotation, argon flow, pressure, magnet position and magnetic strength. However for methods using a magnetic field, the initial investment and operating costs of the equipment affect the wafer pricing. Hence in this study simulations were performed with the purpose of producing low-cost, high-quality ingots through the development of a process to optimize oxygen concentration without the use of magnets and through the following. a process appropriate to the defect-free range was determined by regulating the pulling rate of the crystals.

Effect of buoyancy and thermocapillarity on the melt motion and mass transfer for different aspect ratio of flow field in magnetic Czochralski crystal growth of silicon (Cusp 자장이 걸려있는 초크랄스키 실리콘 단결정성장에서 유동장의 종횡비에 따라 부력과 열모세관 현상이 용융물질의 유동과 물질전달에 미치는 영향)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.177-184
    • /
    • 2000
  • The effect of the buyancy and thermocapillarity for differnent aspect ratio of flow field on melt motion and mass transfer has been numerically investigated in magnetic Czochralski crystal growth of silicon. During the process of crystal growth, the melt depth of crucible reduces so the aspect ratio of flow field also reduces. Therefore the shape of magnetic field of the flow field changes and the flow pattern also changes significantly. Together with the melt flow which forms the Marangoni convection (or thermocapillary flow) that comes from the inside the flow field, a flow circulation is observed near the corner close both to the crucible wall and the free surface. Due to this circulation, buoyancy effect has been turned out to be local rather than global. As the aspect ratio decreases, the radial component of the magnetic field prevails compared with the axial component in the flow field. Under the influence of this magnetic field, the melt flow and the temperature distribution in a meridional plane tend to depend on the radial position. As the aspect ratio decreases, the temperature gradient near the edge of the crystal decreases yielding smaller thermocapillarity, and the oxygen concentration near the crystal and the oxygen incorporation rate also decrease.

  • PDF

Defect analysis of calcium fluoride single crystal substrates with (100) and (111) orientation ((100) 및 (111) 배향을 갖는 CaF2 단결정 기판의 결함 분석)

  • Ye-Jin Choi;Min-Gyu Kang;Gi-Uk Lee;Mi-Seon Park;Kwang-Hee Jung;Hea-Kyun Jung;Doo-Gun Kim;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • The CaF2 single crystal has notable characteristics such as a large band gap (12 eV), excellent transparency over a wide wavelength range, low refractive index and dispersion. Due to these outstanding properties, CaF2 single crystal has considered as a promising material for short-wavelength light sources in recent lithography processes. However, there is an inherent birefringence of the material at 157 nm and the resulting aberration can be compensated for through the combination of the (100) plane and the (111) plane. Therefore, it is necessary to investigate the characteristics according to the plane. In this study, we analyzed crystallinity, optical properties of commercial CaF2 single crystal wafers grown by the Czochralski method. In particular, through chemical etching under various conditions, it was confirmed that the shape of etch pits appears differently depending on the plane and the shape and array of specific etch pits affected by dislocations and defects were examined.