• Title/Summary/Keyword: 초점면부 제어기법

Search Result 2, Processing Time 0.015 seconds

Design of the Active Optical Compensation Movements for Image Stabilization of Small Satellite (소형 위성 영상안정화를 위한 능동형 광학 보정장치 설계)

  • Hwang, Jai Hyuk;Yang, Ji Youn;Park, Jean Ho;Jo, Jeong Bin;Kang, Myoung Soo;Bae, Jae Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.472-478
    • /
    • 2015
  • This paper describes the design of the active optical compensation movements(at focal plane, secondary mirror) for the image stabilization of a small satellite camera. The movements can correct optical misalignment on-line and directly compensate vibration disturbances in the focal plane. Since the devices are installed inside the space camera, it has an remarkable advantage to deal with the structural deformation of a space camera effectively. In this paper, the requirements of the active optical compensation movements for 1m GSD small satellite camera have been analyzed. Based on the established requirements, the design of the active compensation movements have been conducted. The designed active optical compensation system can control 5 axes movements independently to compensate micro-vibration disturbances in the focal plane and to refocus the optical misaligned satellite camera.

On the Experimental Modeling of Focal Plane Compensation Device for Image Stabilization of Small Satellite (소형위성 광학탑재체의 영상안정화를 위한 초점면부 보정장치의 실험적 모델링에 관한 연구)

  • Kang, Myoung-Soo;Hwang, Jai-Hyuk;Bae, Jae-Sung;Park, Jean-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.757-764
    • /
    • 2015
  • Mathematical modeling of focal plane compensation device in the small earth-observation satellite camera has been conducted experimently for compensation of micro-vibration disturbance. The PZT actuators are used as control actuators for compensation device. It is quite difficult to build up mathematical model because of hysteresis characteristic of PZT actuators. Therefore, the compensation device system is assumed as a $2^{nd}$ order linear system and modeled by using MATLAB System Identification Toolbox. It has been found that four linear models of compensation device are needed to meet 10% error in the input frequency range of 0~50Hz. These models describe accurately the dynamics of compensation device in the 4 divided domains of the input frequency range of 0~50Hz, respectively. Micro-vibration disturbance can be compensated by feedback control strategy of switching four models appropriately according to the input frequency.