• Title/Summary/Keyword: 초전도 코일 응력

Search Result 2, Processing Time 0.015 seconds

Characteristic Analysis of Modularized HTS Field Coils for a Superconducting Wind Power Generator According to Field Coil Structure (계자 코일 구조에 따른 초전도 풍력 발전기의 모듈화 된 HTS계자 코일의 특성 분석)

  • Tuvdensuren, Oyunjargal;Go, Byeong-Soo;Sung, Hae-Jin;Park, Min-Won;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.15-23
    • /
    • 2019
  • High temperature superconducting (HTS) generators for wind power systems are attractively researched with the advantages of high efficiency and smaller size compared with conventional generator. However, the HTS generators have high Lorentz force problem, which acts on HTS field coils due to their high current density and magnetic field. This paper deals with characteristic analysis of the modularized HTS field coil for a 750 kW superconducting wind power generator according to field coil structure. The modularized HTS field coil structure was designed based on the electromagnetic and mechanical analysis results obtained using a 3D finite element method. The electromagnetic force of the module coil was also analyzed. As a result, the perpendicular and maximum magnetic fields of the HTS coils were 2.5 T and 3.9 T, respectively. The maximum stress of the supports was less than the allowable stress of the glass-fiber reinforced plastic material, and displacement was within the acceptable range. The design specifications and the results of the HTS module coil structure can be effectively utilized to develop large-scale superconducting wind power generators.

Stress analysis of HTS racetrack coils for 10 MW class superconducting wind power generator (10 MW 급 초전도 풍력발전기용 고온초전도 레이스트렉 코일의 응력 해석)

  • Kim, Kwangmin;Kim, Gyeong-Hun;Park, Minwon;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.13-18
    • /
    • 2013
  • The authors designed a high temperature superconductor (HTS) racetrack coil for a 10 MW class superconducting synchronous wind turbine generator. The designed HTS racetrack coil was analyzed by an electromagnetic finite element method (FEM) to determine the magnetic field distribution, inductance, stress, etc. This paper describes the stress analysis and structure design result of the HTS racetrack coil for 10 MW class superconducting synchronous wind turbine generators, considering orthotropic material properties, a large magnetic field, and the resulting Lorentz force effect. Insulated HTS racetrack coils and no-insulation HTS racetrack coils were also considered. According to the results of the stress analysis, the no-insulation HTS racetrack coil results were better than the insulated HTS racetrack coil results.