• Title/Summary/Keyword: 초저전력 시스템

Search Result 34, Processing Time 0.026 seconds

A Comparison of BER Performance for Receivers of NOMA in 5G Mobile Communication System (5G 이동 통신 시스템에서 비직교 다중접속의 수신기들에 대한 BER 성능의 비교)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.7-14
    • /
    • 2020
  • In the fifth generation (5G) mobile networks, the mobile services require 100 times faster connections. One of the promising 5G technologies is non-orthogonal multiple access (NOMA). In NOMA, the users share the channel resources, so that the more users can be served simultaneously. There are several advantages offered by NOMA, such as higher spectrum efficiency and low transmission latency, compared to orthogonal multiple access (OMA), which is usually used in the fourth generation (4G) mobile networks, for example, long term evolution (LTE). In this paper, we compare the receivers for NOMA. The standard NOMA receiver, the non-SIC NOMA receiver, and the symmetric superposition coding (SC) NOMA receiver are compared. Specifically, it is shown that the performance of the standard receiver is the best, whereas the performances of the non-SIC receiver and symmetric SC receiver are dependent on the power allocation.

Application of Navigating System based on Bluetooth Smart (블루투스 스마트 기반의 내비게이팅 시스템)

  • Lee, YoungDoo;Jan, Sana Ullah;Koo, Insoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Bluetooth Low Energy (BLE), also known as Bluetooth Smart, has ultra-low power consumption; in fact, BLE-enabled devices can run on a single coin cell battery for several years. In addition, BLE can estimate the approximate distance between two devices using the Received Signal Strength Indication (RSSI) feature, enabling relatively precise navigation in indoor and small outdoor areas where GPS is not an option. In this paper, an experimental setup is presented in which BLE is used for navigation within a small outdoor area. BLE-based beacons are installed in fixed positions, which periodically transmit a universally unique identifier (UUID). A smart device receives the UUID and sends it to a database server using cellular or Wi-Fi technology. The server returns fixed position information corresponding to the received UUID codes, and the smart device uses that information to compute its current position based on relative signal strengths, and display it on a map. These results demonstrate the successful application of BLE technology for navigation in small outdoor areas. This system can be implemented for indoor navigation as well.

Impact of Channel Estimation Errors on SIC Performance of NOMA in 5G Systems (5G 시스템에서 비직교 다중접속의 SIC 성능에 대한 채널 추정 오류의 영향)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.9
    • /
    • pp.22-27
    • /
    • 2020
  • In the fifth generation (5G) networks, the mobile services require much faster connections than in the fourth generation (4G) mobile networks. Recently, as one of the promising 5G technologies, non-orthogonal multiple access (NOMA) has been drawing attention. In NOMA, the users share the frequency and time, so that the more users can be served simultaneously. NOMA has several superiorites over orthogonal multiple access (OMA) of long term evolution (LTE), such as higher system capacity and low transmission latency. In this paper, we investigate impact of channel estimation errors on successive interference cancellation (SIC) performance of NOMA. First, the closed-form expression of the bit-error rate (BER) with channel estimation errors is derived, And then the BER with channel estimation errors is compared to that with the perfect channel estimation. In addition, the signal-to-noise (SNR) loss due to channel estimation errors is analyzed.

Development of Wireless Smart Sensing Framework for Structural Health Monitoring of High-speed Railway Bridges (고속 철도 교량의 구조 건전성 모니터링을 위한 스마트 무선 센서 프레임워크 개발)

  • Kim, Eunju;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2016
  • Railroad bridges account for 25% of the entire high-speed rail network. Railway bridges are subject to gradual structural degradation or fatigue accumulation due to consistent and repeating excitation by fast moving trains. Wireless sensing technology has opened up a new avenue for bridge health monitoring owing to its low-cost, high fidelity, and multiple sensing capability. On the other hand, measuring the transient response during train passage is quite challenging that the current wireless sensor system cannot be applied due to the intrinsic time delay of the sensor network. Therefore, this paper presents a framework for monitoring such transient responses with wireless sensing systems using 1) real-time excessive vibration monitoring through ultra-low-power MEMS accelerometers, and 2) post-event time synchronization scheme. The ultra-low power accelerometer continuously monitors the vibration and trigger network when excessive vibrations are detected. The entire network of wireless smart sensors starts sensing through triggering and the post-event time synchronization is conducted to compensate for the time error on the measured responses. The results of this study highlight the potential of detecting the impact load and triggering the entire network, as well as the effectiveness of the post-event time synchronized scheme for compensating for the time error. A numerical and experimental study was carried out to validate the proposed sensing hardware and time synchronization method.