This experiment was conducted to investigate the effects of different levels of light intensity (100, 200, 400 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$, and natural light) on the growth and the fruit quality of cucumber(Cucumis sativus cv. Hyakunari-3). The results of this experiment indicated that plant height and length of lateral shoots were decreased under low light condition, but it was not significantly different among treatments. Leaf area and root weight were lowest under low light intensity(100 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$), but no significant differences were noted between 200 and 400 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$. Photosynthesis rate was decreased with reduced light intensity and total chlorophyll contents, root activity and xylem sap were also decreased under low light intensity, but there was no significant difference between 200 and 400 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$. From the SEM observation the erosion of the guard cells and closed stomata in low light treatment were shown and the size of stoma were small also the stomatal aperture were decreased with reducing the light intensity. Chlorosis in leaves and aborted-liked fruits were appeared under low light condition and Ca and Mg uptake in leaves were decreased by shading in proportion to the decrease of light intensity. Fruit yields were decreased by 65% under 400 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$, and by 80${\sim}$90% under 200 and 100 ${\mu}mol\;{\codt}\;m^{-2}\;{\cdot}\;s^{-1}$, compared to those under the natural light. This low intensity of light caused the sharp decrease in the early harvested yields within two weeks and the fruit yields of lateral shoots were greatly decreased.
Cheon, Mi Geon;Lee, Young Suk;Chung, Yong Mo;Kim, Hee Dae;Hong, Kwang Pyo;Kumarihami, H.M. Prathibhani C.;Kim, Jin Gook
Journal of Bio-Environment Control
/
v.28
no.4
/
pp.447-453
/
2019
In this study, the effect of supplying volume and frequency of a nutrient solution consisted with $NO_3-N$ 4.6, $NH_4-N$ 3.4, $PO_4-P$ 3, K 3, Ca 4.6 and Mg $2.2mmol{\cdot}L^{-1}$ on growth and fruit quality of 'Duke' blueberry was investigated. Three years old 'Duke' blueberry bushes cultivated in containers ($60{\times}80{\times}40cm$) filled with 130L peat moss and 40L pearlite (v/v) were selected for the experiment. The growth containers were mulched with sawdust. Two different volumes (4L and 8L) of nutrient solution was tested at three different supplying frequencies (one time, two times, and three times) per week and the drainage quality of nutrient solution and fruit quality of 'Duke' blueberry was evaluated. The optimal drainage rate for the vegetable cultivation is known to be 20-30%. The results revealed that the average drainage rates of 27% and 29% for the nutrient solution supplied in 'Duke' blueberry growth medium at 4L, 2 times/7 days and 4L, 3 times/7days, respectively. The highest shoot diameter (4.2mm) and shoot length (31cm) of 'Duke' blueberry was recorded with the 8L of nutrient solution supplied at 3 times per 7 days. According to the analysis of inorganic components in the drainage of nutrient solution, there was a tendency of absorbing nitrogen at the early stage of growth. The supplying volume and frequency of nutrient solution was not significantly affected on 'Duke' blueberry fruit weight, soluble solids content, and titratable acidity. The highest yield per bush (2.7kg) was recorded for the nutrient solution supplied with 4L at three times per 7 days, while the 4L nutrient solution supplied at one time per 7 days resulted the lowest yield of 1.4kg per bush. Consequently, the tested nutrient solution can be applied for the 'Duke' blueberry bushes with the volume of 4L at three times per week for the better crop growth.
Kim, Jae Kyung;Kim, Il Seop;Kang, Ho Min;Choi, Ki Young
Journal of Bio-Environment Control
/
v.28
no.4
/
pp.286-292
/
2019
This study aimed to investigate the suitable of layer on growth of six baby leaf vegetables using existing facilities and equipment in rice seedling nursery. Three kinds of Lactuca(lettuce 'Jinppallola' and 'Romain white', and indian lettuce), two of Brassica(tatsoi and red tatsoi) and amaranth were used as the materials. After sowing, the rice seedling tray was placed in multi bench system($L120{\times}W60{\times}H195cm$, 10th floor), which were low(1st) layer above 15cm, middle(4th) layer above 115cm and high(7th) layer above 175cm apart from ground. Irrigation was sprayed 2~3 times a day using a automatic irrigation system. The growth characteristics and leaf color were investigated when leaf vegetables were reached the optimum size(within 10cm of plant height). During the culture periods(29th Jun.~31th Jul. 2017), daytime average temperature was $27.4{\sim}28.3^{\circ}C$ regardless of layers but solar irradiance was higher in the high-layer than low and middle-layer of 37% and 22%, respectively. The leaf length, leaf width and number of leaves in middle and high-layer have a tendency to increase but, fresh weight was different according to the layer. When the correlation between accumulation radiation and growth was analyzed, all of growth factor of Amaranth showed a high correlation and other cultivars showed correlation with each growth factors. As a result, It is suitable that amaranth and red tatsoi for high-layer, Indian lettuce and tatsoi for middle and high-layer and 'Romain white' for middle-layer. The growth of red lettuce 'Jinppallola' was good at low layer, but leaf color expression was poor. So the high layer is suitable for 'Jinppallola'.
Wi, Seung Hwan;Yeo, Kyung-Hwan;Choi, Hak Soon;Yu, Inho;Lee, Jin Hyong;Lee, Hee Ju
Journal of Bio-Environment Control
/
v.30
no.4
/
pp.448-454
/
2021
This study was conducted to the effect of low air temperature and light intensity conditions on yield and quality of tomato at the early stage of growth in Korea. Inplastic greenhouses, low temperature and low temperature with shade treatments were performed from 17 to 42 days after plant. Tomato growing degree days were decreased 5.5% due to cold treatment during the treatment period. Light intensity decreased 74.7% of growing degree days due to shade. After commencing treatments, the plant growth decreased by low temperature and low radiation except for height. Analysis of the yield showed that the first harvest date was the same, but the yield of the control was 3.3 times higher than low temperature with shade treatment. The cumulative yields at 87 days after transplanting were 1734, 1131, and 854 g per plant for control, low temperature, and low temperature with shade, respectively. The sugar and acidity of tomatoes did not differ between treatment and harvesting season. To investigate the photosynthetic characteristics according to the treatment, the carbon dioxide reaction curve was analyzed using the biochemical model of the photosynthetic rate. The results showed that the maximum photosynthetic rate, J (electric transportation rate), TPU (triose phosphate utilization), and Rd (dark respiration rate) did not show any difference with temperature, but were reduced by shading. Vcmax (maximum carboxylation rate) was decreased depending on the low temperature and the shade. Results indicated that low temperature and light intensity at the early growth stage can be inhibited the growth in the early stage but this phenomenon might be recovered afterward. The yield was reduced by low temperature and low intensity and there was no difference in quality.
Kim, Eun Ji;Park, Kyoung Sub;Goo, Hei Woong;Park, Ga Eun;Myung, Dong Ju;Jeon, Yong Hwan;Na, Haeyeong
Journal of Bio-Environment Control
/
v.30
no.4
/
pp.335-341
/
2021
In this study, experiments were conducted to investigate the effects of high- temperature stress on paprika in a semi-closed greenhouse where cooling is available and a normal plastic greenhouse. Paprika grown in a semi-closed greenhouse in which geothermal cooling is provided showed a significantly higher speed of photosynthesis than paprika grown in a 3-layer plastic greenhouse in which there is no cooling system. It suggests that the photosynthesis speed of paprika in a plastic house decreases owing to high temperature stress. Plant height increased by 13cm more in the semi-closed greenhouse, and the size of leaf showed similar growth speed until the 2nd week after transplanting, however, after 3 weeks, the semi-closed greenhouse showed a big difference by 47% compared with the plastic greenhouse. In terms of the fruit count, the semi-closed greenhouse had 10.6 fruits/plant and the plastic greenhouse had 4.6 fruits/plant, indicating that the semi-closed greenhouse had a higher number of fruits by 130% than the plastic greenhouse. The fruit weight also presented a difference between the semi-closed greenhouse and the plastic greenhouse by 46%, which is 566.7g/plant and 387g/plant, respectively. According to the above mentioned results, it was validated that when paprika is cultivated in a semi-closed greenhouse where a cooling system is applied, photosynthesis and growth were better than in the normal plastic greenhouse. Thus, if the hot summer season is overcome by applying the elemental technologies for the cooling system to the normal plastic greenhouse, farm income may increase through improvement in the yield and quality.
Yoon, Seungri;Kim, Jin Hyun;Hwang, Inha;Kim, Dongpil;Shin, Jiyong;Son, Jung Eek
Journal of Bio-Environment Control
/
v.30
no.3
/
pp.237-243
/
2021
The objective of this study was to evaluate the effect of stem number on plant growth, fruit quality, and yield of sweet peppers grown in greenhouses under supplemental lighting in winter. The seedlings were transplanted at 3.2 plants·m-2 on October 26, 2020, and started supplemental lighting with 32 high pressure sodium lamps for 16-hour photoperiod from December 1, 2020 to May 25, 2021. Stems were differently trained with 2 and 3 numbers after branching nodes were developed. In the final harvest, the plant height was significantly shorter in the 3 stem-plants than in the 2 stem-plants. The number of nodes per stem and the leaves per plant were increased in the 3 stem-plants than in the 2 stem-plants, while the leaf area was less affected. There were no significant differences in the dry mass of leaves, stems, and immature fruits between the 2 and 3 stem-plants. The fruit fresh weight and fruit dry weight in the 3 stem-plants were decreased by 17% and 12% at 156 days after transplanting (DAT), and by 17% and 15% at 198 DAT compared to those in the 2 stem-plants, respectively. The marketable fruit rates were 93.6% and 95.4% in the 2 and 3 stem-plants, respectively. The total fruit yield in the 3 stem-plants was increased by 30.2% as compared to that in the 2 stem-plants. We concluded that the 3-stem-training cultivation positively affected the total fruit yield by sustaining adaptive vegetative growth of the plants. This result will help producers make useful decisions for increasing productivity of sweet peppers in greenhouses.
Kim, Ju Young;Han, Su Jeong;Whang, Lixia;Lee, Joo Hwan;Choi, In-Lee;Kang, Ho-Min
Journal of Bio-Environment Control
/
v.28
no.3
/
pp.197-203
/
2019
This study was carried out to investigate the effect of chlorine water and plasma gas treatment on the quality and microbial control of Latuca indica L. baby Leaf during storage. Latuca indica L. baby leaves were harvested from a plant height of 10cm. They were sterilized with $100{\mu}L{\cdot}L^{-1}$ chlorine water and plasma-gas (1, 3, and 6hours), and packaged with $1,300cc{\cdot}m^{-2}{\cdot}day^{-1}{\cdot}atm^{-1}$ films and then stored at $8{\pm}1^{\circ}C$ and RH $85{\pm}5%$ for 25days. During storage, the fresh weight loss of all treatments were less than 1.0%, and the carbon dioxide and oxygen concentrations in packages were 6-8% and 16-17%, respectively for all treatments in the final storage day. The concentration of ethylene in the packages fluctuated between $1-3{\mu}L{\cdot}L^{-1}$ during the storage and the highest concentration of ethylene was observed at 6 hours plasma treatment in the final storage day. The off-odor of all treatments were almost odorless, the treatments of chlorine water and 1 hour plasma maintained the marketable visual quality until the end of storage. Chlorophyll content and Hue angle value measured at the final storage day were similar to those measured before storage in chlorine water and 1 hour of plasma treatments. E. coli was not detected immediately after sterilization in all sterilization treatments. After 6 hours of plasma treatment, the total bacteria fungus counts were lower than the domestic microbial standard for agricultural product in all sterilization treatments. The total aerobic counts in the end storage day increased compared to before storage, whereas E. coli was not detected in all sterilization treatments. The sterilization effect against bacteria and fungi was the best in chlorine water treatment. Plasma treatment showed sterilization effects, but within a prolonged period of time. In addition, the sterilization effect decreased gradually. These results suggest that chlorine water and plasma treatment were effective in maintaining Latuca indica L. baby Leaf commerciality and controlling microorganisms during postharvest storage.
Choi, In-Lee;Wang, Lixia;Lee, Ju Hwan;Han, Su Jung;Ko, Young-Wook;Kim, Yongduk;Kang, Ho-Min
Journal of Bio-Environment Control
/
v.28
no.3
/
pp.265-272
/
2019
The purpose of this study was to investigate the effects of LED and QD-LED (Quantum Dot) irradiation on seed germination, antioxidant ability, and microbial growth, during red radish (Raphanus sativus L.) sprouts cultivation. Irradiated light was blue, red, blue + red and blue + red + far red (QD-LED) lights, and the controls were a fluorescent lamp (FL), and dark condition. Germination rate of red radish was highest in the dark condition. The plant height and fresh weight of red radish sprouts that irradiated each light for 24 hrs after 7 days growing in dark condition, did not shown significantly difference among treatments. After 24 hrs of light irradiation, cotyledon green was best in blue + red light, and the red hypocotyl was excellent in blue light and QD-LED light. DPPH and phenol contents were high in dark and blue + red light treatment, and anthocyanin content was high in blue light and QD-LED light. Total aerobic counts were similar in all treatments and did not show bactericidal effect, whereas E. coli count was lowest in QD-LED light treatment, and yeast and mold counts were lowest in FL only treatment. Results suggest that when red radish seeds were germinated in dark condition and cultivated for 7 days as sprouts, and then treated with blue light or QD-LED light for 24 hrs, the seeds produced good quality red radish sprouts with greenish cotyledon, reddish hypocotyl, high anthocyanin content, and lower level of E coli contamination.
Kwon, Jin Kyung;Kang, Suk Won;Paek, Yee;Moon, Jong Pil;Jang, Jae Kyung;Oh, Sung Sik
Journal of Bio-Environment Control
/
v.28
no.1
/
pp.46-54
/
2019
Experiments of local cooling and heating on crown and root zone of forcing cultivation of strawberry 'Seolhyang' using heat pump and root pruning before planting were conducted. During the daytime, the crown surface temperature of the crown local cooling treatment was maintained at $18{\sim}22^{\circ}C$. This is suitable for flower differentiation, while those of control and root zone local cooling treatment were above $30^{\circ}C$. Budding rate of first flower clusters and initial yields were in the order of crown local cooling, root zone local cooling and control in root pruning plantlet and non pruning plantlet, except for purchase plantlet. Those of root pruning plantlet were higher than those of non pruning plantlet. These trends were evident in the yield of the first flower cluster until February 14, 2018, and the effect of local cooling and root pruning decreased from March 9, 2018. The budding rates of the second flower cluster according to the local cooling and root pruning treatments were not noticeable compared to first flower cluster but showed the same tendency as that of first flower cluster. In the heating experiment, root zone local heating(root zone $20^{\circ}C$+inside greenhouse $5^{\circ}C$) and crown local heating(crown $20^{\circ}C$+inside greenhouse $5^{\circ}C$) saved 59% and 65% of heating fuel, respectively, compared to control(inside greenhouse $9^{\circ}C$). Considering the electric power consumption according to the heat pump operation, the heating costs were reduced by 55% and 61%, respectively.
This study was conducted to evaluate the growth characteristics of lettuce (Lactuca sativa L.) as affected by artificial light sources and different growing media in a closed-type plant production system (CPPS). The lettuce seeds were sown in the 128-cell plug tray filled with 5 different growing media such as urethane sponge (US), rock-wool (RW), Q-plug (QP), TP-S2 (TP) and PU-7B (PU). The germination rate of lettuce seeds was examined during 12 days after sowing. On the 13 days after sowing, the lettuce seedlings were transplanted in a CPPS with temperature $25{\pm}1^{\circ}C$ and nutrient solution (EC $2.0dS{\cdot}m^{-1}$, pH 6.5) using recirculating deep floating technique system. The light sources were set with FL (fluorescent lamps) and combined RB LEDs (red : blue = 7 : 3) with $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and a photoperiod of 14/10 hours (light/dark). The initial germination rate of lettuce was the highest in TP. The final germination and mean daily germination were the significantly highest in RW, QP and TP. The plant height, leaf length, leaf width, leaf area, and fresh and dry weights of shoot were the greatest in QP irradiated with RB LED. The number of leaves, fresh and dry weights of root and SPAD were the greatest in QP and TP irradiated with RB LED. The root length was the longest in TP irradiated with RB LED. Therefore, these results indicate that RB LED was effective for the growth of lettuce and it was also found that the QP and TP were effective for the germination and growth of lettuce in a CPPS. In addition, we confirmed the applicability of the newly developed growing medium TP for the lettuce production in a CPPS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.