• Title/Summary/Keyword: 초임계 중합

Search Result 17, Processing Time 0.031 seconds

Ring-Opening Polymerization of ʟ-Lactide with Polydimethylsiloxane Based Stabilizers in Supercritical Carbon Dioxide (폴리디메틸실록산계 안정화제를 이용한 초임계 이산화탄소에서의 ʟ-Lactide의 개환중합)

  • Hwang, Ha Soo;Lim, Kwon Taek
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.62-66
    • /
    • 2006
  • Poly($\small{L}$-Lactide)(PLLA) was prepared by a ring-opening polymerization of $\small{L}$-Lactide with various polydimethylsiloxane(PDMS) based copolymers as a stabilizer in supercritical carbon dioxide($scCO_2$). The block copolymeric stabilizers were synthesized by group transfer polymerization (GTP) by using PDMS macroinitiator. PLLA was found to be produced with fairly low molecular weight distribution as confirmed by gel permeation chromatography(GPC) analysis. Scanning electron microscopy (SEM) results showed that sub-micron size Poly($\small{L}$-lactide)(PLLA) particles were formed by suspension polymerization.

  • PDF

Scale-up Polymerization of L -Lactide in Supercritical Fluid (초임계 유체에서 L-Lactide의 Scale-up 중합)

  • Prabowo, Benedictus;Kim, Se-Yoon;Choi, Dong-Hoon;Kim, Sao-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.284-288
    • /
    • 2011
  • For the purpose of the pre-industry production of poly(L-lactide) (PLLA) and full understanding of the supercritical polymerization system, large scale polymerization of L-iactide initiated by 1-dodecano/stannous 2-ethyl-hexanoate (DoOH/Sn(Oct)$_2$) was carried out in supercritical chlorodifluoromethane under various reaction conditions (time, temperature and pressure)and reactants (monomer and supercritical solvent) concentrations. A 3 L sized-reactor system was used throughout this study. The monomer conversion increased to 72% on increasing reaction time to 5 h. The molecular weight of PLLA product also increased to 68000 g/moi over the same period. An increase in monomer concentration resulted in a higher molecular weight, up to 144000 g/mol and 97% of monomer conversion. Raising the reaction pressure from 130 to 240 bar also resulted in an increased monomer conversion and molecular weight. To increase heat resistivity of PLLA, methanol treatment and heat-vacuum methods were evaluated. Both of them successfully improved the heat resistivity property of PLLA.

Synthesis of Polymers in Supercritical Carbon Dioxide (초임계 유체를 이용한 고분자 합성 연구)

  • Lee, Hyun-Suk;Kim, Jin-Woong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.17-32
    • /
    • 2010
  • This review shows the design and the development of new $CO_2$-soluble hydrocarbon copolymers which can be used as effective stabilizers for successful dispersion polymerizations of bio-compatible materials in supercritical carbon dioxide ($scCO_2$). The basic concepts of supercritical fluid including its solvent properties and applications in polymer synthesis are described. We report the facile synthesis of highly soluble hydrocarbon based copolymers, prepared with good control via controlled free radical polymerization from readily accessible and commercially available monomers. The phase behaviour of these materials was monitored in pure $CO_2$ to investigate how the molecular weights and the composition of the copolymers affect their solubility in $CO_2$. Their activity as a stabilizer was then tested in dispersion polymerization of N-vinyl pyrrolidone in $CO_2$ at various reaction conditions to identify the key parameters required for a successful dispersion stabilization of growing PVP particles. Some prospective potentials of this research which can be applied in developing new polymer materials in an environmentally-friendly fashion for use in cosmetics are also discussed.

Dispersion Polymerization of Acrylate Monomers in Supercritical $CO_2$ using GMA-functionalized Reactive Surfactant (초임계 이산화탄소에서 Glycidyl methacrylate 반응성 계면활성제를 이용한 아크릴레이트의 분산중합)

  • Park, Kyung-Kyu;Kang, Chang-Min;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.45 no.4
    • /
    • pp.256-262
    • /
    • 2010
  • Dispersion polymerization of methyl acrylate, ethyl acrylate, butyl acrylate, and glycidyl methacrylate were performed in supercritical $CO_2$ at $80\;^{\circ}C$ and 346 bar. Glycidyl methacrylate linked poly(dimethylsiloxane) (GMS-PDMS) surfactant, which was prepared by linking glycidyl methacrylate to monoglycidyl ether terminated PDMS with amino-propyltriethoxysilane, was used as surfactant for the dispersion polymerization in $CO_2$. The yield of the poly(alkyl acrylate) polymers, synthesized in $CO_2$ medium, decreased as the alkyl tail of the acrylate monomers increased. Poly(glycidyl methacrylate) and poly(methyl acrylate) were produced in bead form whereas poly(ethyl acrylate) and poly(butyl acrylate) were viscous liquid. The poly(glycidyl methacrylate) particles had a number average diameter of 2.45 ${\mu}m$ and monodisperse distribution. The poly(methyl acrylate) had a number average diameter of 0.52 ${\mu}m$ and the particle size distribution was bimodal. The glass transition temperatures ($T_g$) of the poly(glycidyl methacrylate) and the poly(alkyl acrylate) products were 4~9 K higher than the $T_g$ of the corresponding acrylate polymers synthesized in conventional processes.

Preparation of Porous Polymer Monoliths in Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 다공성 고분자 Monolith 제조)

  • Kang, Se Ran;Ju, Chang Sik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • Experimental researches on the preparation of porous polymeric monoliths in supercritical carbon dioxide have been performed and the effects of monomer and polymerization parameters on the physical properties of the monolith prepared were examined. Polymerizations were carried out in the high pressure stainless steel reactor with sapphire window to show the phase change during the polymerization reaction, and continuous and dry porous monolithic polymer could be obtained. The specific surface area of monolithic polymer increased with monomer contents in reaction mixture and reaction pressure. The Rockwell hardness could be enhanced by the addition of co-monomer MMA in reaction mixtures.

Synthesis of Poly(vinyl acetate) Using Supercritical Carbon Dioxide and Subsequent Preparation of Poly(vinyl alcohol) (초임계이산화탄소를 이용한 폴리비닐아세테이트의 합성과 그로부터 폴리비닐알코올의 제조)

  • Choe, Woo-Hyuk;Pham, Quang Long;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • Vinyl acetate(VAc) was dispersion-polymerized using supercritical carbon dioxide that has many environmental advantages. To get poly(vinyl acetate) (PVAc) of larger molecular weights from conventional emulsion polymerization, VAc was polymerized at temperatures between 333.15 and 343.15 K and pressures between 20 and 40 MPa with initiator (0.5 ~ 5% of monomer) and silicone-based stabilizer (1 ~ 10% of monomer) for 2 ~ 50 hr. The resulting PVAc was analyzed to see the variations in the yield and the molecular weight. The final product of this research, PVA (poly(vinyl alcohol)), was prepared from PVAc by saponification. The effect of saponification conditions on the yield and the molecular weight of polymer were also studied.

Preparation of Polypropylene Grafted Polystyrene Sulfonic Acid Membranes for DMFCs in Supercritical CO2 (초임계 이산화탄소 함침을 이용한 연료전지용 폴리스타이렌/폴리프로필렌 복합막의 제조)

  • Byun, Jungyeon;Sauk, Junho;Synn, Wookyun;Kim, Hwayong
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.141-146
    • /
    • 2005
  • The composite membranes were made by grafting using supercritical carbon dioxide (scCO2) impregnation and polymerization procedures. The membranes were synthesized by changing amount of monomer. The polypropylene grafted polystyrene sulfonic acid (PP-g-pssa) membranes were characterized with various methods. The morphology and structure of PP-g-pssa membranes were analyzed with scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). As amount of monomer was increased, ion conductivity, cell performance was increased and methanol permeability was decreased. However PP-g-pssa membranes with 1.5g monomer and over had similar values of methanol permeability, ion conductivity and cell performance.

  • PDF

Application of Separation Technology and Supercritical Fluids Process (초임계유체 공정과 분리기술의 응용)

  • Yoon, Soon-Do;Byun, Hun-Soo
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.123-143
    • /
    • 2012
  • Supercritical fluid technology (SFT) is recently one of the most new techniques, which has been interested various fields of related chemical industries. SFT is the most effective and practical technology with eco-friendly, energy-savings, and high efficiency as the technique using the advantages of supercritical fluid such as high solvation power, solubility, mass transfer rate, and diffusion rate. Especially, it is necessary to analyze, evaluate, and develop the potential of application techniques using SFT with these characterizations. Therefore in this review, the phase behavior in supercritical fluid at high temperature and pressure of monomers/polymers for the optimization of polymerization process are briefly described, and the preparation of molecularly imprinted polymers (MIPs) in supercritical fluid using supercritical polymerization and the performance evaluation of MIPs are introduced.

Synthesis of Resorcinol/Formaldehyde Organic Aerogels by Low Temperature Supercritical Drying Process (저온 초임계 건조 공정을 이용한 Resorcinol/Formaldehyde계 유기 에어로겔의 제조)

  • Song, Jae-Hwa;Lee, Hae-Jun;Kim, Jung-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.6 no.11
    • /
    • pp.1082-1089
    • /
    • 1996
  • 본 연구에서는 resorcinol과 formaldehyde를 이요하여 수상에서 축중합시켜 겔을 만든 후 저온 초임계 건조 공정을 이용하여 겔 구조의 변형없이 용매를 제거하여 내무 표면적과 같은 에어로겔의 최종 물성에 미치는 영향을 알아보기 위하여 고형분의 농도(2-5%)를 변화시켜 실험한 결과 초기 반응조건이 반응시간 및 최종물성에 변수가 됨을 알 수 있었다. 또한 제조된 에어로겔에 100-30$0^{\circ}C$까지 온도를 가하며 표면 특성을 분석한 결과 열을 가함에 따라 기공의 크기가 커지고 표면적이 감소됨을 관찰할 수 있었다.

  • PDF