• Title/Summary/Keyword: 초임계 사이클

Search Result 34, Processing Time 0.021 seconds

Waste heat recovery of recirculated MCFC using supercritical carbon dioxide power cycle (초임계 이산화탄소 사이클을 이용한 연료 재순환 MCFC의 폐열회수)

  • Lee, Jae Yoon;Ahn, Ji Ho;Kim, Tong Seop
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.42-45
    • /
    • 2019
  • The molten carbonate fuel cell has a high temperature of waste heat and can constitute a bottoming cycle to increase the efficiency. Previous study used a bottoming cycle as steam turbine cycle. In this study, we are going to replace the bottoming cycle with a supercritical carbon dioxide power cycle. The system power was compared to consider replacing the bottoming cycle. As a result, the power of the supercritical carbon dioxide power cycle at the present development stage is lower than that of the steam turbine cycle, but theoretically, the power can be larger than the steam turbine cycle. If the supercritical carbon dioxide power cycle improves the isentropic efficiency of the turbine by 89%, the isentropic efficiency of the compressor by 83%, and the effectiveness of the recuperator by 0.9, the power can be same to the steam turbine cycle.

분산형 발전시스템의 기술개발 동향 - 분산형 초임계 이산화탄소 사이클 발전시스템 기술개발 동향

  • Kim, Yeong-Min
    • 기계와재료
    • /
    • v.26 no.1
    • /
    • pp.38-46
    • /
    • 2014
  • 초임계 이산화탄소 사이클 발전시스템은 액체와 기체의 복합 특성을 가지는 초임계 유체의 특성을 잘 활용하여 고효율 및 고출력의 장점을 가지며, 다양한 열원을 이용한 발전이 가능하기 때문에 최근 차세대 발전기술로서 주목을 받고 있다. 미국, 일본 등 선진국에서는 현재 실험실 규모의 시스템 검증을 거쳐 수십 MWe급 시스템 개발을 진행 중에 있으며 수백 MWe급 플랜트를 구축하는 프로젝트도 준비 중에 있다. 본 고에서는 이러한 초임계 이산화탄소 사이클 발전시스템의 기술적 특징과 기술개발 동향을 소개하고, 특히 향후 분산형 발전시스템으로 적용 가능성을 제시하고자 한다.

  • PDF

Research on the Development of the Supercritical CO2 Dual Brayton Cycle (초임계 이산화탄소 이중 브레이튼 사이클 개발 연구)

  • Baik, Young-Jin;Na, Sun Ik;Cho, Junhyun;Shin, Hyung-Ki;Lee, Gilbong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.673-679
    • /
    • 2016
  • Because of the growing interest in supercritical carbon dioxide power cycle technology owing to its potential enhancement in compactness and efficiency, supercritical carbon dioxide cycles have been studied in the fields of nuclear power, concentrated solar power (CSP), and fossil fuel power generation. This study introduces the current status of the research project on the supercritical carbon dioxide power cycle by Korea Institute of Energy Research (KIER). During the first phase of the project, the un-recuperated supercritical Brayton cycle test loop was built and tested. In phase two, researchers are designing and building a supercritical carbon dioxide dual Brayton cycle, which utilizes two turbines and two recuperators. Under the simulation condition considered in this study, it was confirmed that the design parameter has an optimal value for maximizing the net power in the supercritical carbon dioxide dual cycle.

Simulation of a Supercritical Carbon Dioxide Power Cycle with Preheating (예열기를 갖는 초임계 이산화탄소 동력 사이클의 시뮬레이션)

  • Na, Sun-Ik;Baik, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.787-793
    • /
    • 2015
  • In response to the growing interest in supercritical carbon dioxide ($S-CO_2$) power cycle technology because of its potential enhancement in compactness and efficiency, the $S-CO_2$ cycles have been studied intensively in the fields of nuclear power, concentrated solar power (CSP), and fossil fuel power generation. Despite this interest, there are relatively few studies on waste heat recovery applications. In this study, the $S-CO_2$ cycle that has a split flow with preheating was modeled and simulated. The variation in the power was investigated with respect to the changes in the value of a design parameter. Under the simulation conditions considered in this study, it was confirmed that the design parameter has an optimal value that can maximize the power in the $S-CO_2$ power cycle that has a split flow with preheating.

Performance Analysis of R744(Carbon Dioxide) for Transcritical Refrigeration System (R744용 초임계 냉동사이클의 성능 분석)

  • Roh, Geun-Sang;Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2009
  • In this paper, cycle performance analysis for cooling capacity, compression work and COP of R744($CO_2$) transcritical vapor compression refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, outlet temperature of gas cooler and evaporating temperature in the R744 vapor compression cycle. The main results were summarized as follows : The cooling capacity of R744 increases with superheating degree, but decreases with the increasing evaporating temperature and outlet temperature of gas cooler. The compression work increases with superheating degree and cooling pressure of R744, but decreases with the increasing evaporating temperature. And, The COP increases with outlet temperature and evaporating temperature of R744 gas cooler, but decreases with the increasing superheating degree. Therefore, superheating degree, outlet temperature and evaporating temperature of R744 vapor compression refrigeration system have an effect on the cooling capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the compression refrigeration cycle using R744.

Performance Analysis of Scroll Expander-Compressor Unit for $CO_2$ Transcritical Cycles ($CO_2$ 초임계 사이클을 위한 일체형 스크롤 팽창기-압축기 성능해석)

  • Kim Hyun-Jin;Nam Bo-Young;Ahn Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.434-442
    • /
    • 2006
  • In a two-stage compression $CO_2$ transcritical cycle, application of a scroll expander-compressor unit has been considered in order to improve the cycle COP. For both expander and 1st stage compressor, scroll wrap profile which was originally designed for a R410A air-conditioning cycle mechanism was used with minor modifications: wrap height and involute end angle were adjusted for required displacement volume and built-in volume ratio. For pressure condition of 10 Mpa/3.5 MPa and expander inlet temperature of $35^{\circ}C$, 25% improvement in COP was obtained by using expander-compressor unit. As evaporator pressure increased, COP improvement was lowered mainly due to decreasing compressor peformance.

Performance Analysis of R744 (Carbon Dioxide) Transcritical Refrigeration System Using Internal Heat Exchanger (내부 열교환기를 이용한 R744용 초임계 냉동사이클의 성능 분석)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.459-465
    • /
    • 2009
  • This paper considers the influence of internal heat exchangers to the efficiency of a refrigerating system. These internal heat exchangers(liquid-suction or suction-line heat exchangers) can, in some cases, yield improved system performance while in other cases they degrade system performance. A steady state mathematical model is used to analysis the performance characteristics of refrigeration system with internal heat exchanger. The influence of operating conditions, such as gas cooler pressure and evaporation temperatures, superheat in the evaporator and temperature of gas cooler outlet, to optimal dimensions of the heat exchanger is also analyzed in the paper. The main results were summarized as follows : the mass flowrate of R744, inner diameter tube and length of internal heat exchanger, and effectiveness have an effect on the cooling capacity, compressor work and RCI(Relative capacity index) of this system. With a thorough grasp of these effect, it is necessary to design the R744 compression refrigeration cycle using internal heat exchanger.