• Title/Summary/Keyword: 초음파 분무냉각

Search Result 3, Processing Time 0.022 seconds

The Experimental Study on Mist Cooling Heat Transfer (초음파진동을 이용한 미세분무냉각 열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.202-207
    • /
    • 2010
  • Mist cooling is widely employed as a cooling technique of high temperature surfaces, and it has heat transfer characteristics similar to boiling heat transfer which has the convection, nucleate and film boiling regions. In the present study, mist cooling heat transfer was experimentally investigated for the mist flow impacting on the heated surfaces of mico-fins. The mist flow was generated by supersonic vibration. Experiments were conducted under the test conditions of droplet flow rate, $Q=6.02{\times}10^{-9}{\sim}3.47{\times}10^{-8}\;m^3/s$ and liquid temperature, $T_f=30{\sim}35^{\circ}C$. From the experimental results, it is found that an increase in the droplet flow rate improves mist cooling heat transfer in the both case of smooth surface and surfaces of micro-fins. Micro-fins surfaces enhance the mist cooling heat transfer. Besides, the experimental results show that an increase in the droplet flow rate decrease the heat transfer efficiency of mist cooling.

An Experimental Study on Ultrasonic Spray Cooling of Heat Pipe Condenser (히트파이프 응축부의 초음파 분무냉각에 관한 실험적 연구)

  • 김영찬;한양호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.77-83
    • /
    • 2004
  • In this study, the spray cooling heat transfer and working characteristics of the screen wick heat pipe with ultrasonic spray cooling system in condenser were experimentally investigated. The heat pipe was made of copper tube 300 mm long with inner diameter of 11.1 mm. The evaporator and condenser lengths of heat pipe were 40, 200 mm and the wick structure consists of two layer of 100 mesh copper screen. The experimental results show that the ultrasonic spray cooling increases the heat transfer rate on the condenser surface, and the total thermal resistance of heat pipe system decreases remarkably. A comparison is made for the two working fluids, water and ethanol. The surface temperature of the ethanol tube in evaporator section becomes higher than that of the water tube. Thus, the experimental result shows that water is more useful than ethanol as the working fluid because of increasing the operational limit within this experimental conditions.

Study on Characteristic of CO2 Hydrate Formation Using Micro-sized Ice (미세직경 얼음을 이용한 CO2 하이드레이트 제조특성 연구)

  • Lee, Jong-Hyub;Kang, Seong-Pil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.690-695
    • /
    • 2012
  • Gas hydrate is an inclusion compound consisting of water and low molecular weight gases, which are incorporated into the lattice structure of water. Owing to its promising aspect to application technologies, gas hydrate has been widely studied recently, especially $CO_2$ hydrate for the CCS (Carbon Capture and Storage) issue. The key point of $CO_2$ hydrate technology for the CCS is how to produce gas hydrate in an efficient and economic way. In this study, we have tried to study the characteristic of gas hydrate formation using micro-sized ice through an ultrasonic nozzle which generate 2.4 MHz frequency wave. $CO_2$ as a carrier gas brings micro-sized mist into low-temperature reactor, where the mist and carrier gas forms $CO_2$ hydrate under $-55^{\circ}C$ and atmospheric pressure condition and some part of the mist also remains unreacted micro-sized ice. Formed gas hydrate was average 10.7 of diameter at average. The starting ice particle was set to constant pressure to form $CO_2$ hydrate and the consumed amount of $CO_2$ gas was simultaneously measured to calculate the conversion of ice into gas hydrate. Results showed that the gas hydrate formation was highly suitable because of its extremely high gas-solid contact area, and the formation rate was also very high. Self-preservation effect of $CO_2$ hydrate was confirmed by the measurement of $CO_2$ hydrate powder at normal and at pressed state, which resulted that this kind of gas storage and transport could be feasible using $CO_2$ hydrate formation.