• Title/Summary/Keyword: 초음파탐상

Search Result 199, Processing Time 0.024 seconds

Development of MFL Testing System for the Inspection of Storage Tank Floor (저장탱크 바닥면 검사를 위한 누설자속 탐상 시스템 개발)

  • Won, Soon-Ho;Cho, Kyung-Shik;Lee, Jong-O;Chang, Hong-Keun;Joo, Gwang-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.38-44
    • /
    • 2002
  • MFL method is a qualitative inspection tool and is a reliable, fast and economical NDT method. The application of MFL method to the inspection of storage tank floor plates has been shown to be a viable means. Examination of tank floors previously depended primarily upon ultrasonic test methods that required slow and painstaking application. Therefor most ultrasonic inspection of storage tank has been limited to spot testing only. Our NDE group have developed magnetic flux leakage system to overcome limitation of ultrasonic test. The developed system consists of magnetic yoke, array sensor, crawler and software. It is proved that the system is able to detect artificial flaw like 3.2mm diameter, 1.2mm depth in 6mm thick steel plate.

Eddy Current and Ultrasonic IRIS Signal Characteristics of Reboiler Tube by Using STS 316L Calibration Specimen (STS 316L 교정시험편을 이용한 재가열기 튜브의 와전류신호와 초음파 IRIS 신호 특성)

  • Tak, Kyeong-Joo;Kim, Byung-Il;Gook, Jin-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.56-63
    • /
    • 2012
  • In this study, a field applicability of reboiler tube was evaluated by comparing ECT signal with IRIS signal about wall loss rate and remaining wall thickness using worked austenite STS 316L ASME standard calibration tube. In the case of wall-loss rate, as a result, tolerance about $20%{\times}4$ flat bottom hole and 10% O D groove(ECT), 80% defect and 10% O D groove(IRIS) occurred up to ${\pm}15%$. In the case of remaining wall thickness, ECT was satisfied with the both tolerance, but tolerance about 80% defect occurred up to ${\pm}15%$ in IRIS. Therefore, if the IRIS is performed for interpretation of non-relevant indication and measurement of wall-loss rate after ECT, reliability is supposed to be improved.

An Ultrasonic Pattern Recognition Approach to Welding Defect Classification (용접 결함 분류를 위한 초음파 형상 인식 기법)

  • Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.2
    • /
    • pp.395-406
    • /
    • 1995
  • Classification of flaws in weldments from their ultrasonic scattering signals is very important in quantitative nondestructive evaluation. This problem is ideally suited to a modern ultrasonic pattern recognition technique. Here brief discussion on systematic approach to this methodology is presented including ultrasonic feature extraction, feature selection and classification. A stronger emphasis is placed on probabilistic neural networks as efficient classifiers for many practical classification problems. In an example probabilistic neural networks are applied to classify flaws in weldments into 3 classes such as cracks, porosity and slag inclusions. Probabilistic nets are shown to be able to exhibit high performance of other classifiers without any training time overhead. In addition, forward selection scheme for sensitive features is addressed to enhance network performance.

  • PDF

Investigation of CT Imaging Technique Using Guided Wave (유도초음파를 이용한 판 구조물 CT 영상화 기법)

  • Yoon, Hyun-Woo;Kang, To;Kim, Hak-Joon;Song, Sung-Jin;Shin, Ho-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.11-18
    • /
    • 2011
  • Ultrasonic guided waves have been widely utilized for long range inspection of structures. Recently, many researchers have paid attention to the tomographic imaging using guided wave for the diagnosis of plate-like structures because group velocity of guided waves is changed by central frequency of transducer and thickness of plate. Currently, Delay and Sum imaging technique and MVDR(Minimum Variance Distortionless Response) imaging technique are performed. So the performance of these two imaging techniques are investigated in this paper.

Ultrasonic C-scan Technique for Nondestructive Evaluation of Spot Weld Quality (Spot용접 접합면의 초음파 비파괴평가 기법 제 1보 C-scan 기법을 중심으로)

  • Park, Ik-Gun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.2
    • /
    • pp.112-121
    • /
    • 1994
  • This paper discusses the feasibility of ultrasonic C-scan technique for nondestructive evaluation of spot weld quality. Ultrasonic evaluation for spot weld quality was performed by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget, preliminary infinitesimal gap experiment by newton ring is tried in order to set up the optimum ultrasonic test condition. Ultrasonic image data obtained were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be measured with the accuracy of 1.0mm, and voids included in nugget can be detected to $10{\mu}m$ extent with simplicity and accuracy. Finally, it was found that it is necessary to make a profound study of definite discrimination of corona bond from nugget and the approach of quantitative evaluation of nugget diameter by utilizing the various image processing techniques.

  • PDF

Dynamic Mode Tuning of Ultrasonic Guided Wave Using an Array Transducer (배열 탐촉자를 사용한 유도초음파의 모드선정 기법)

  • Kim, Young-H.;Song, Sung-Jin;Park, Joon-Soo;Kim, Jae-Hee;Eom, Heung-Sup
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.20-26
    • /
    • 2005
  • Ultrasonic guided waves have been widely employed for long range inspection of structures such as plates, rods and pipes. There are numerous modes with different wave velocities, and the appropriate mode selection is one of key techniques in the application of guided waves. In the present work, phase tuning by an array transducer was applied to generate ultrasonic guided waves. For this purpose, 8-channel ultrasonic pulser/receiver and their controller which enables sequential activation of each channels with given time delay were developed. Eight transducers were fabricated in order to generate guided waves by using an array transducer. The selective tuning of wave mode can be achieved by changing the interval between elements of an array transducer.

The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures (원전 구조물 결함 탐지를 위한 음향방출 신호 처리 방안에 대한 기초 연구)

  • Kim, Jong-Hyun;Korea Aerospace University, Jae-Seong;Lee, Jung;Kwag, No-Gwon;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.485-492
    • /
    • 2009
  • The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection.

Nondestructive Evaluation Technique of Painted Sandwich Control Surfaces of CN-235 using Full-field Pulse-echo Ultrasonic Propagation Imaging System (전영역 펄스-에코 초음파전파영상화 시스템의 CN-235의 도색된 샌드위치 조종면 In-situ 비파괴평가 기술)

  • Hong, Seung-Chan;Lee, Jung-Ryul;Park, Jongwoon
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.288-292
    • /
    • 2016
  • In this paper, a novel ultrasonic propagation imaging system, called a full-field pulse-echo ultrasonic propagation imaging (FF PE UPI) system is introduced. The system nondestructively inspected targets with two-axis translation stage. The coincident laser beams for ultrasonic sensing and generation are scanned and pulse-echo mode laser ultrasounds are captured. This procedure makes it possible to generate full-field ultrasound in through-the-thickness direction as large as the scan area. Structural inspection results in the form of full-field ultrasonic wave propagation videos are introduced, which are painted sandwich control surfaces. In addition, the inspection results of FF PE UPI system are compared with conventional ultrasonic testing methods such as waterjet and portable C-scan.

Procedure Development and Qualification of the Phased Array Ultrasonic Testing for the Nuclear Power Plant Piping Weld (원자력발전소 배관 용접부 위상배열 초음파검사 절차서 개발 및 기량검증)

  • Yoon, Byung-Sik;Yang, Seung-Han;Kim, Yong-Sik;Lee, Hee-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.317-323
    • /
    • 2010
  • The manual ultrasonic examination for the nuclear power plant piping welds has been demonstrated by using KPD(Korean Performance Demonstration) generic procedure. For automated ultrasonic examination, there is no generic procedure and it should be qualified by using applicable automated equipment. Until now, most of qualified procedures used pulse-echo technique and there is no qualified procedure using phased array technique. In this study, data acquisition and analysis software were developed and phased-array transducer and wedge were designed to implement phased array technique for nuclear power plant in-service inspection. The developed procedure are qualified for performance demonstration for the flaw detection, length sizing and depth sizing. The qualified procedure will be applied for the field examination in the nuclear power plant piping weld inspection.

Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment (소켓 용접부 결함 검사용 초음파 자동 검사 장비 개발)

  • Lee, Jeong-Ki;Park, Moon-Ho;Park, Ki-Sung;Lee, Jae-Ho;Lim, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.275-281
    • /
    • 2004
  • Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants.