• Title/Summary/Keyword: 초속경

Search Result 113, Processing Time 0.027 seconds

Development Ultra Rapid Hardening Construction Materials on Cold Weather Environment Considering Curing Temperature (양생온도를 고려한 극한지용 초속경 건설재료 개발)

  • Cho, Hyun-Woo;Shin, Hyun-Seop;Lee, Jang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.59-66
    • /
    • 2013
  • Because ordinary concrete cannot be hardened well under sub-zero temperatures, anti-freeze agents are typically added to prevent the frost damage and to ensure the proper hardening of concrete. With the advantage of a rapid exothermic reaction property, jet set concrete may be used as a cold weather concrete because it can reach the required strength before being damaged by cold weather. Recent studies are reported that magnesia-phosphate composites can be hardened very quickly and hydrated even in low temperature, which can be used as an alternative of severe cold weather concrete in arctic regions. This study developed the magnesia-phosphate composites that can be used in severe cold regions and suggested an appropriate mixture design from the experimental results.

Mechanical Properties of High-Early-Strength Concrete for Early Traffic Opening (조기교통개방 콘크리트의 강도특성)

  • Won, Jong-Pil;Kim, Hyun-Ho;Ahn, Tae-Song
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.123-130
    • /
    • 2001
  • This study was performed to enhance mechanical properties of high-early-strength concrete using regulated-set cement for early traffic opening with various mixtures. Restraint of moisture and thermal movements of concrete pavement in actual field conditions, by external or internal restraining factors, generates tensile stresses which introduce microcracks and thus reduce the mechanical properties of concrete. Fiber reinforcement of concrete is an effective approch to the control of microcrack and crack development under tensile stresses. Three different types of regulated-set cement which recently have been used in Korea and two different types of fiber were adopted. Fibers were added and their mixtures are compared with plain high-early-strength concrete mixture. From the test results, fiber reinforced concrete was increased mechanical properties of high-early-strength concrete using regulated-set cement than the plain concrete.

  • PDF

Crack Prevention of Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트의 균열 억제방안)

  • Lee, Bong-Hak;Choi, Pan-Gil
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.89-96
    • /
    • 2008
  • An increase in the amount of cracking in repaired concrete bridge decks using VES-LMC(Very Early Strength - Latex Modified Concrete ; below VES-LMC) has been noticed by Yun et al(1). Literature indicates that indeed many concrete bridge decks develop transverse cracking, most developing at early ages(3~7 days), many right after construction. The purpose of this study was to establish prevention of map, transverse and longitudinal cracking in VES-LMC and to provide a control methods for minimizing the occurrence of cracks. The proposed prevention against map and transverse cracking was verified by field applications. VES cement was modified, the unit cement contents was reduced into $360kg/m^3$ from $390kg/m^3$, the maximum size of coarse aggregate was increase into 19mm from 13mm, wire mesh and steel fibers were incorporated in concrete mixture. A series of variable combinations were attempted. As a results, the proposed prevention against map and transverse cracking was verified because no crack were occurred until 90 days after overlay.

  • PDF

Basic Properties and Dimension Stability of Ultra Rapid Setting Cement Mortar Containing Low-Quality Recycled Aggregate (저품질의 순환골재를 혼입한 초속경 시멘트 모르타르의 기초물성 및 부피안정성)

  • Jeon, Sang-Min;Kim, Hyeong-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.246-252
    • /
    • 2021
  • The basic properties and volume stability of the ultra-rapid setting cement mortar containing low-quality recycled aggregate with a higher water absorption and lower specific gravity than relavent Korea Standard were experimentally confirmed. The mix proportion without recycled aggregate followed that of the general repair mortar used in the fields. 15% and 30% of the fine aggregate was substituted by the recycled aggregate in the mixtures with and without latex emulsion, and properties and characteristics of the mortar including mortar flow, setting time, compressive and flexural strength, and linear deformation under sealed and unsealed conditions were evaluated. It was confirmed that when low-quality recycled aggregate was used by 30%, there were risks of decrease in the early-age strength by up to 50% within 24h and increases in drying shrinkage by up to 2 times for 2 weeks compared to the the mixtures without the recycled aggregate.

Compressive and Adhesive Strengths of Mortars using Re-emulsification Type Polymer and Ultra-Rapid-Hardening Cement (재유화형 분말수지와 초속경 시멘트를 혼입한 모르타르의 압축강도 및 접착강도 특성)

  • Lee, Kwang-Il;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.329-335
    • /
    • 2018
  • The objective of this study is to develop a mortar mixture with high workability and adhesive strength for section jacketing in seismic strengthening technology of existing concrete structures. To achieve targeted requirements of the mortars (initial flow exceeding 200 mm, compressive strength of 30MPa, and adhesive strength exceeding 1MPa), step-by-step tests were conducted under the variation of the following mixture parameters: water-to-binder ratio, sand-to-binder ratio, polymer-to-binder ratio, dosage of viscosity agent, and content of ultra-rapid-hardening cement. The adhesive strength of the mortars was also estimated with respect to the various surface treatment states of existing concrete. Based on the test results, the mortar mixture with the polymer-to-binder ratio of 10% and the content of ultra-rapid-hardening cement of 5% can be recommended for the section jacketing materials. The recommended mortar mixture satisfied the targeted requirements as follows: initial flow of 220 mm, high-early strength gain, 28-day compressive strength of 35MPa, and adhesive strength exceeding 1.2MPa.