• Title/Summary/Keyword: 초소형 X-선 튜브

Search Result 6, Processing Time 0.016 seconds

Introduction of Dental X-ray Imaging with New Concept - intra Oral x-ray Tube (신개념 치과용 X-선 영상장치 소개 - 강내형 X-선 튜브)

  • Cho, Sung-Ho;Kim, Dong-Young;Baek, Kwang-Woo;Lee, Re-Na
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.94-101
    • /
    • 2011
  • Various kinds of medical imaging devices have been studied to develop periapical radiography. However, there are some problems such as high x-ray exposure rate and pains for patients because of the problems caused by intra-oral sensor based radiography system. In this study, a new concept of periapical radiography, intra oral X-ray tube and detector system, is introduced to solve these problems. This system is made up of miniature X-ray tube based on subminiature thermal electron or cold electron, CMOS based detector, and a body including automatic position and system control devices. In order to confirm the possibility of proposed new concept to periapical radiography, miniature x-ray tube from XOFT corporation is used to develop new x-ray system, and the performance evaluation of this system is performed according to collimator. Also, dental images are compared after acquiring both images from existing system versus new concept of system. As a result, new concept of system showed excellent image. Thus, it is considered that new concept of system will have a significant effect on medical imaging technology.

The Characteristic of Temperature and Dose Distribution of intra oral X-ray Tube (강내형 X선 튜브 온도 및 선량 분포 특성)

  • Cho, Sungho;Lee, Rena
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.262-266
    • /
    • 2013
  • A new concept of periapical radiography, intra oral x-ray tube and detector system is introduced. It is new system that a miniature x-ray tube is inserted into mouse and it acquired digital image using external detector. In this study, we have investigated temperature and dose distribution of insertional x-ray tube for periapical radiography. To analyze temperature characteristic of x-ray tube, we attached the thermocouple to surface of x-ray tube and we measured the temperature according to distance. Also, we measured the dose distribution of a miniature x-ray tube according to distance. As a result, temperature was constant to $27^{\circ}C$ over 2mm without cooling system, dose distribution of x-ray tube was 3.14 and 1.84mGy in 3 and 5cm, respectively. Therefore, the proposed x-ray system works in lower dose than conventional dental x-ray system. Thus, it is considered that new concept of system will have a significant effect on medical imaging technology.

Dosimetric Evaluation of a Small Intraoral X-ray Tube for Dental Imaging (치과용 초소형 X-선 튜브의 선량평가)

  • Ji, Yunseo;Kim, YeonWoo;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.160-167
    • /
    • 2015
  • Radiation exposure from medical diagnostic imaging procedures to patients is one of the most significant interests in diagnostic x-ray system. A miniature x-ray intraoral tube was developed for the first time in the world which can be inserted into the mouth for imaging. Dose evaluation should be carried out in order to utilize such an imaging device for clinical use. In this study, dose evaluation of the new x-ray unit was performed by 1) using a custom made in vivo Pig phantom, 2) determining exposure condition for the clinical use, and 3) measuring patient dose of the new system. On the basis of DRLs (Diagnostic Reference Level) recommended by KDFA (Korea Food & Drug Administration), the ESD (Entrance Skin Dose) and DAP (Dose Area Product) measurements for the new x-ray imaging device were designed and measured. The maximum voltage and current of the x-ray tubes used in this study were 55 kVp, and 300 mA. The active area of the detector was $72{\times}72mm$ with pixel size of $48{\mu}m$. To obtain the operating condition of the new system, pig jaw phantom images showing major tooth-associated tissues, such as clown, pulp cavity were acquired at 1 frame/sec. Changing the beam currents 20 to $80{\mu}A$, x-ray images of 50 frames were obtained for one beam current with optimum x-ray exposure setting. Pig jaw phantom images were acquired from two commercial x-ray imaging units and compared to the new x-ray device: CS 2100, Carestream Dental LLC and EXARO, HIOSSEN, Inc. Their exposure conditions were 60 kV, 7 mA, and 60 kV, 2 mA, respectively. Comparing the new x-ray device and conventional x-ray imaging units, images of the new x-ray device around teeth and their neighboring tissues turn out to be better in spite of its small x-ray field size. ESD of the new x-ray device was measured 1.369 mGy on the beam condition for the best image quality, 0.051 mAs, which is much less than DRLs recommended by IAEA (International Atomic Energy Agency) and KDFA, both. Its dose distribution in the x-ray field size was observed to be uniform with standard deviation of 5~10 %. DAP of the new x-ray device was $82.4mGy*cm^2$ less than DRL established by KDFA even though its x-ray field size was small. This study shows that the new x-ray imaging device offers better in image quality and lower radiation dose compared to the conventional intraoral units. In additions, methods and know-how for studies in x-ray features could be accumulated from this work.