• Title/Summary/Keyword: 초분

Search Result 297, Processing Time 0.035 seconds

A Study on the Object-based Classification Method for Wildfire Fuel Type Map (산불연료지도 제작을 위한 객체기반 분류 방법 연구)

  • Yoon, Yeo-Sang;Kim, Youn-Soo;Kim, Yong-Seung
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.213-221
    • /
    • 2007
  • This paper showed how to analysis the object-based classification for wildfire fuel type map using Hyperion hyperspectral remote sensing data acquired in April, 2002 and compared the results of the object-based classification with the results of the pixel-based classification. Our methodological approach for wildfire fuel type map firstly processed correcting abnormal pixels and atypical bands and also calibrating atmospheric noise for enhanced image quality. Fuel type map is characterized by the results of the spectral mixture analysis(SMA). Object-based approach was based on segment-based endmember selection, while pixel-based method used standard SMA. To validate and compare, we used true-color high resolution orthoimagery.

  • PDF

Validation of the Radiometric Characteristics of Landsat 8 (LDCM) OLI Sensor using Band Aggregation Technique of EO-1 Hyperion Hyperspectral Imagery (EO-1 Hyperion 초분광 영상의 밴드 접합 기법을 이용한 Landsat 8 (LDCM) OLI 센서의 방사 특성 검증)

  • Chi, Junhwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.399-406
    • /
    • 2013
  • The quality of satellite imagery should be improved and stabilized to satisfy numerous users. The radiometric characteristics of an optical sensor can be a measure of data quality. In this study, a band aggregation technique and spectral response function of hyperspectral images are used to simulate multispectral images. EO-1 Hyperion and Landsat-8 OLI images acquired with about 30 minutes difference in overpass time were exploited to evaluate radiometric coefficients of OLI. Radiance values of the OLI and the simulated OLI were compared over three subsets covered by different land types. As a result, the index of agreement shows over 0.99 for all VNIR bands although there are errors caused by space/time and sensors.

Solid-state Supramolecular polymer electrolytes containing double hydrogen bonding sites for high efficiency dye-sensitized solar cells(DSSCs) (초분자 고체전해질을 이용한 고효율 염료감응형 태양전지)

  • Kim, Sun-Young;Jeon, La-Sun;Lee, Yong-Gun;Kang, Yong-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.309-311
    • /
    • 2007
  • Supramolecules containing double hydrogen bonding sites at their both chain ends were self-polymerized to become solid state polymer and were utilized to improve the efficiency of solid state DSSCs. Hydrogen bonding sites were attached at the chain ends of PEG of Mw=2000, such as pyrimethamine and glutaric acid. The solar cell with the solid state supramolecular polymer electrolyte resulted in the overall energy conversion efficiency of 4.63 % with a short circuit current density $(J_{sc})$ of 10.41 $mAcm^{-2}$, an open circuit voltage $V_{oc}$, of 0.71 V and a fill factor (FF) of 0.62 at one sun condition ([oligomer]:[1-methyl-3-propyl imidazolium iodide (MPII)]:$[I_2]$ = 20 : 1 : 0.19, active area = 0.16 $cm^2$, $TiO_2$ layer thickness = 10 ${\mu}m$). The ionic conductivity of the sol id state electrolyte was $5.11{\times}10^{-4}$ (S/cm). The cell performance was characterized by electrochemical impedance spectroscopy and ionic conductivity.

  • PDF

Feature selection and similarity comparison system for identification of unknown paintings (미확인 작품 식별을 위한 Feature 선정 및 유사도 비교 시스템 구축)

  • Park, Kyung-Yeob;Kim, Joo-Sung;Kim, Hyun-Soo;Shin, Dong-Myung
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.1
    • /
    • pp.17-24
    • /
    • 2021
  • There is a problem that unknown paintings are sophisticated in the level of forgery, making it difficult for even experts to determine whether they are genuine or counterfeit. These problems can be suspected of forgery even if the genuine product is submitted, which can lead to a decline in the value of the work and the artist. To address these issues, in this paper, we propose a system to classify chromaticity data among extracted data through objective analysis into quadrants, extracting comparisons and intersections, and estimating authors of unknown paintings using XRF and hyperspectral spectrum data from corresponding points.

Development of AI oxygen temperature measurement technology using hyperspectral optical visualization technology (초분광 광학가시화 기술을 활용한 인공지능 산소온도 측정기술 개발)

  • Jeong Hun Lee;Bo Ra Kim;Seung Hun Lee;Joon Sik Kim;Min Yoon;Gyeong Rae Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.103-109
    • /
    • 2023
  • This research developed a measurement technique that can measure the oxygen temperature inside a high temperature furnace. Instead of measuring only changes in frequency components within a small range used in the existing variable laser absorption spectroscopy, laser spectroscopy technology was used to spread out wavelength of the light source passing through the gas Based on a total of 20,000 image data, research was conducted to predict the temperature of a high-temperature furnace using CNN with black and white images in the form of spectral bands by temperature of 25 to 800 degrees. The optimal model was found through Hyper parameter optimization, R2 score is 0.89, and the accuracy of the test data is 88.73%. Based on this research, it is expected that concentration measurement and air-fuel ratio control technology can be applied.

Review of applicability of Turbidity-SS relationship in hyperspectral imaging-based turbid water monitoring (초분광영상 기반 탁수 모니터링에서의 탁도-SS 관계식 적용성 검토)

  • Kim, Jongmin;Kim, Gwang Soo;Kwon, Siyoon;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.919-928
    • /
    • 2023
  • Rainfall characteristics in Korea are concentrated during the summer flood season. In particular, when a large amount of turbid water flows into the dam due to the increasing trend of concentrated rainfall due to abnormal rainfall and abnormal weather conditions, prolonged turbid water phenomenon occurs due to the overturning phenomenon. Much research is being conducted on turbid water prediction to solve these problems. To predict turbid water, turbid water data from the upstream inflow is required, but spatial and temporal data resolution is currently insufficient. To improve temporal resolution, the development of the Turbidity-SS conversion equation is necessary, and to improve spatial resolution, multi-item water quality measurement instrument (YSI), Laser In-Situ Scattering and Transmissometry (LISST), and hyperspectral sensors are needed. Sensor-based measurement can improve the spatial resolution of turbid water by measuring line and surface unit data. In addition, in the case of LISST-200X, it is possible to collect data on particle size, etc., so it can be used in the Turbidity-SS conversion equation for fraction (Clay: Silt: Sand). In addition, among recent remote sensing methods, the spatial distribution of turbid water can be presented when using UAVs with higher spatial and temporal resolutions than other payloads and hyperspectral sensors with high spectral and radiometric resolutions. Therefore, in this study, the Turbidity-SS conversion equation was calculated according to the fraction through laboratory analysis using LISST-200X and YSI-EXO, and sensor-based field measurements including UAV (Matrice 600) and hyperspectral sensor (microHSI 410 SHARK) were used. Through this, the spatial distribution of turbidity and suspended sediment concentration, and the turbidity calculated using the Turbidity-SS conversion equation based on the measured suspended sediment concentration, was presented. Through this, we attempted to review the applicability of the Turbidity-SS conversion equation and understand the current status of turbid water occurrence.