• Title/Summary/Keyword: 초등과학 영재

Search Result 375, Processing Time 0.025 seconds

A Study on Scientifically-Gifted Students' Misconceptions regarding 'Small Living Things' (초등 과학 영재 학생들의 '작은 생물'에 대한 오개념 연구)

  • Kim, Se-Wook;Hong, Seung-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.spc5
    • /
    • pp.485-494
    • /
    • 2007
  • The aims of this study were to investigate the differences of the proportion of misconceptions and the reasons for selecting responses related to questions about small living things between talented and average students. The study subjects were made up of three groups. They were a class of 37 talented elementary students in science attending J National University of Education, a class of 37 talented students in science attending J City Office of Education, and a class of 33 average students attending J City. A questionnaire was composed of 20 test questions for examination of concepts related to small living things. The data obtained in this study was analyzed using a statistical program. The major results were as follows: In general, the level of the scientific concepts possessed by the talented students was much higher than that of the average students, especially in question 14. The reasons for the misconceptions which were revealed through this study were classified into vagueness of the language used, hasty decision and deduction making, using the wrong analogical inference, mass communications (TV or internet) and experimental differences between individuals. In terms of the reasons for the selection of a given response, the talented students had also a higher frequency in the 'science books for children' category than the average students, indicating that various kinds of science books for children have an influence on the formation of concepts on small living things. The misconception proportion of male students was 5.4% higher than that of female students in mean frequencies of all questions, although the difference was not statistically significant except for question 4. Data from this study may help teachers involved in education for gifted students to reconsider their conceptions on small living things.

  • PDF

A Case Study on the Development and Implementation of a Elementary Science Differentiated Instruction-Learning Program for the Gifted Underachievers (미성취 영재를 위한 초등 과학 개별화 교수-학습 프로그램의 개발과 적용 사례 연구)

  • Jeong, Seong-Hee;Cheon, Ok-Myung;Kang, Seong-Joo
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.4
    • /
    • pp.394-405
    • /
    • 2015
  • The purpose of this study was to develop and apply a differentiated instruction-learning reflecting various characteristics and demands of the gifted underachievers, and thereby help to develop the study attitude and study achievement of the gifted underachievers. To achieve the purpose, a case study on five gifted underachievers who are in $6^{th}$ grade of elementary school was conducted. By collecting and analyzing a variety of data including standardized tests, interviews with teachers, students, and parents, and observation journals, this researcher examined the characteristics and demands of the gifted underachievers. For the development of the program, differentiated strategies were designed according to students' interest and concern, their multiple-intelligence, and their learning styles. As a result of the application of them, a program with a total of 20 sections was finally developed. The result of the application for the differentiated instruction-learning program revealed improvements in their academic achievements. In addition, it was found that their learning motives were improved. The program was also found to affect their self-concept and their attitude toward learning. The study showed that developing an education program for the gifted underachievers should begin from the analysis of each student's characteristics. Also, it was found that a differentiation strategy could become an alternative to apply various characteristics and demands of the gifted underachievers to the development of a program. The gifted underachievers' intellectual and definitive characteristics were changed even by the short-term mediation. Therefore, the new issue about educating the gifted is to provide a differentiated instruction-learning program fitting their characteristics and demands and help them exert their potential as best as they could.

An Analysis on the Curriculum for the Classes of Elementary Science Gifted in Incheon (인천지역 초등과학영재학급의 교육과정 운영실태 분석)

  • 김은주;최선영;강호감
    • Journal of Korean Elementary Science Education
    • /
    • v.23 no.3
    • /
    • pp.192-198
    • /
    • 2004
  • The purpose of this study was to analysis the curriculum for educating and operating the classes of elementary science gifted in Incheon Metropolitan Office of Education. We developed the framework for curriculum content analysis based on the principles of curriculum development for gifted education. The developed framework was applied to the curricula of four classes of elementary science gifted in Incheon. And the needs of gifted students were surveyed in the classes of the elementary science gifted. The results of this study were as follows: 1. The current curriculums of two classes described the goal of the elementary gifted education, but the content and theme of the curricula of three classes were not related to the contents of the 7th national curriculum. 2. The teaching methods used in the science gifted class were mainly a lecture and an experimental activity. and there was little the process of individual instruction. 3. There was not mostly the products as the results of learning because of little performed by a project teaming, an announcement and an exhibition in gifted class. 4. Most of the students of the science gifted class were estimated by the paper tests and observation of the teacher in charge of the gifted class, not by the products and presentation etc. 5. They mostly preferred the theme of everyday life in addition to the textbook, and the instructional type of enrichment teaming and acceleration learning over the grade of themselves. 6. They mainly expected that the curriculum of the gifted class is operated during the semester.

  • PDF

Analysis of Science Teaching and Learning for the Gifted at Elementary School Level (초등 과학영재수업의 교수ㆍ학습 실태 분석)

  • 서혜애;이선경
    • Journal of Korean Elementary Science Education
    • /
    • v.23 no.3
    • /
    • pp.219-227
    • /
    • 2004
  • This study aims to investigate science teaching and learning for the gifted in comparison with regular classrooms in elementary schools. A questionnaire was developed to survey gifted and general students' perceptions to elementary science teaching and teaming with employing a teaching and learning model for the gifted by Maker and Neilson (1995, 1996). The 28 item questionnaire consisted of four categories of content, teaching and teaming process, student product, and learning environment, and each category included six to nine items. Randomly selected 114 students from gifted classes and 99 students for regular classes responded to the questionnaire through the use of five-point Likert scale. It was found that there are significant differences between gifted and regular classes of science at all four categories of the teaching and learning model for the gifted. Therefore, science teaching and teaming for the gifted seemed to be differentiated from regular classes and emphasized students' creativity. However, no differences were appeared in a few items: study of gifted people and research methods (gifted=3.0; regular=.21 F=2.54), students' freedom of choice for topics of lessons, tasks, etc., (gifted=3.1; regular=3.0, F=0.31), student product addressed to real audience (gifted=2.8, regular=2.6, F=0.96), and students' high mobility to seek for data in library, etc. during class periods (gifted=2.3, regular= 2.3, F=0.01). It was concluded that science education for the gifted in Korea calls for quality improvement in terms of teaching and teaming in various aspects.

  • PDF

An Analysis of Science-gifted Elementary School Students' Ontological Understanding of 'Living Things' (초등 과학영재학생들의 '살아있는 것'에 대한 존재론적 이해 분석)

  • Kim, Dong-Ryeul
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.2
    • /
    • pp.164-182
    • /
    • 2015
  • This study aims to analyze science-gifted elementary students' understanding of 'Living Things' with ontological domains. As research subjects, this study selected 80 science-gifted students who belonged to Education Institute for Science-gifted Elementary Students at University of Education, and this study came to the following conclusions. Firstly, the gifted students thought of animals as living things most, out of which humans accounted for the highest rate. They were also found to evaluate the importance of living things depending on benefits and harms to humans. Secondly, when judging 4 domains of living things, animals, plants, static inanimate objects and dynamic inanimate objects, the gifted students did not have difficulty judging animals, plants and static inanimate objects, but 4 of them judged the moon, a dynamic inanimate object, as a living thing. In the aspect of reaction time, they spent more time judging plants than animals. This study classified their standards of judgement on living things into ontological categories. As a result, it was found that 31 and 33 out of them had standards of judgement corresponding to the category of matter and the category of process respectively, and only 16 of them had standards of judgement corresponding to the category of mental states. Thirdly, how to make a waterwheel and images of euglena and paramecium were shown to 10 of the gifted students who suggested simple movements as characteristics of living things. As a result, 7 of them changed their standards of judgement from the category of matter to the category of process, while 3 of them changed from the category of matter to the category of mental states.

The Effects of STEAM Program on the Scientific Communication Skills and the Learning Flow of Elementary Gifted Students (STEAM 프로그램이 초등영재학생의 과학적 의사소통능력과 학습몰입에 미치는 영향)

  • Bak, Aerina;Kim, Yong Kwon
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.3
    • /
    • pp.439-452
    • /
    • 2014
  • The purpose of this study is to find out the effect of STEAM program on the scientific communication skills and the learning flow of elementary gifted students. The main findings of this study are as follows: First, STEAM program that mathematical, technical, engineering and art factors were combined based on basic concepts of science were developed. Seconds, the change in the scientific communication skills of experimental group applying STEAM program had statistically meaningful difference (p<.05). Third, the flow of experimental class improved, but it had no meaningful difference statistically (p>.05). But it is expected that continuing level adjusted STEAM program might have positive effect on improving the flow with the following three reasons: 1) The gifted students' flow level on learning before experiment was rather too high to expect short term effect. 2) It was hard for them to achieve flow experience because topic difficulties and students' capacities were not balanced. 3) topic commitments and autotelic behaviors of gifted students were observed during classes. Fourth, by the result of the student satisfaction questionnaire survey on this program, students actively participated in the STEAM program with interest and curiosity. As achieved self-directed problem solving, versatile communication activities and success experiences, their class satisfaction was high. Based on such results, it was expected that the gifted class applied of STEAM program could enhance scientific communication capacity of the elementary gifted students and would further positively influence flow of learning as well. In addition, it was considered to have integrated approach value to elementary gifted and talented education in the aspect that it could satisfy various educational demands of gifted students.

An Analysis of the Scientific Problem Solving Strategies according to Knowledge Levels of the Gifted Students (영재학생들의 지식수준에 따른 과학적 문제해결 전략 분석)

  • Kim, Chunwoong;Chung, Jungin
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.1
    • /
    • pp.73-86
    • /
    • 2019
  • The purpose of this study is to investigate the characteristics of problem solving strategies that gifted students use in science inquiry problem. The subjects of the study are the notes and presentation materials that the 15 team of elementary and junior high school students have solved the problem. They are a team consisting of 27 elementary gifted and 29 middle gifted children who voluntarily selected topics related to dimple among the various inquiry themes. The analysis data are the observations of the subjects' inquiry process, the notes recorded in the inquiry process, and the results of the presentations. In this process, the knowledge related to dimple is classified into the declarative knowledge level and the process knowledge level, and the strategies used by the gifted students are divided into general strategy and supplementary strategy. The results of this study are as follows. First, as a result of categorizing gifted students into knowledge level, six types of AA, AB, BA, BB, BC, and CB were found among the 9 types of knowledge level. Therefore, gifted students did not have a high declarative knowledge level (AC type) or very low level of procedural knowledge level (CA type). Second, the general strategy that gifted students used to solve the dimple problem was using deductive reasoning, inductive reasoning, finding the rule, solving the problem in reverse, building similar problems, and guessing & reviewing strategies. The supplementary strategies used to solve the dimple problem was finding clues, recording important information, using tables and graphs, making tools, using pictures, and thinking experiment strategies. Third, the higher the knowledge level of gifted students, the more common type of strategies they use. In the case of supplementary strategy, it was not related to each type according to knowledge level. Knowledge-based learning related to problem situations can be helpful in understanding, interpreting, and representing problems. In a new problem situation, more problem solving strategies can be used to solve problems in various ways.

An Information Gifted Characteristic Based on Alan Turing's Biography (앨런 튜링의 전기로 본 정보 영재성)

  • Park, Jieun;Kim, Kapsu
    • Journal of The Korean Association of Information Education
    • /
    • v.20 no.4
    • /
    • pp.375-386
    • /
    • 2016
  • Research of information gifted analysis through the adult gifted electrical of information field is not nearly done. Therefore, there is a need for a study to analyze the information gifted property through the life of adult talent. In the present study, the 'Alan Turing' who left the achievements in the field of information was chosen to study. And analyzed the biographies of Alan Turing in the content analysis method was used to derive the factor of information gifted property. As a result, it was found that it contain twelve factors to information gifted of the two regions of Alan Turing. The information special education for extending the gifted of information that is exposed in various forms, there is a need to provide a curriculum that can extend the capabilities of mathematics and science education methods, long-term and multilateral it is necessary to determine the tools and good sense of the information talent teacher that can be to determine the information gifted. Based on this understanding, in future studies, to determine the elementary school information gifted, various information gifted either present were present as may be a substantial aid targeting a map information gifted of the factor analysis, there is a need to be sustained process of information gifted expression of adult information gifted in the direction of a more systematic analysis.

Analysis of Research Trends on Gifted Education in Korea (한국 영재교육의 연구동향 분석)

  • Park, Kyungbin
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.4
    • /
    • pp.823-840
    • /
    • 2012
  • The purpose of this study is to investigate trends of research in the area of gifted education in Korea. Research articles published in the Journal of Gifted/Talented Education from 2006 to the present, which totalled 422 articles, were analyzed. Also, articles in the area of gifted education published in other academic journals registered in Korea Research Foundation totalling 228 were analyzed. In addition, 131 doctoral dissertations on gifted education areas were investigated. The articles were analyzed in terms of their subjects, topics and research methods. The results show that most of the studies looked into elementary and high school students as subjects, and the most researched topics of the articles were program development and curriculum, identification, affective characteristics and cognition. The methodology of majority of the articles were quantitative methods. Implications and future research areas are discussed.

Analysis of Progression Levels for Meta-modeling Knowledge of Science Gifted Students through Modeling (모델링을 통한 과학영재 학생들의 메타모델링 지식 발달 단계 분석)

  • Kim, Sung Ki;Kim, Jung Eun;Park, Se-Hee;Paik, Seoung-Hye
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.3
    • /
    • pp.457-464
    • /
    • 2019
  • This study aims to explore meta-modeling knowledge of gifted students through the modeling. To do this, five gifted students were asked to do modeling related to candle burning, and all the processes of modeling were observed and then individual interviews were conducted. As a result of the study, two students were classified as first level and three students were classified as second level. The students of the first level did not have any model generation or model-based prediction activities, and observation was the most meaningful activity. On the other hand, the students of the second level performed all four modeling processes. However, the generation of the model and the prediction using the model were relatively strong. The data they gained from the experiments was perceived as just confirming the absolute model. No student was found in Level 3 or Level 4. The results of this study show that gifted students remain at the progression level of recognizing the model as an objective reality, and in order to cultivate a true scientist, it is necessary to educate the gifted students to recognize the subjectivity of the model.