• Title/Summary/Keyword: 초기 균열길이

Search Result 56, Processing Time 0.034 seconds

Resistance Curves of Propagating Cracks for Concrete Three-Point Bend Specimens (콘크리트 삼점 휨시험편의 성장하는 균열에 대한 저항곡선)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.568-574
    • /
    • 2001
  • From measured responses of concrete three-point bend tests, the average values of the responses have been calculated. The fracture behavior of continuously propagating concrete crack has been analyzed from the average responses. The experimental parameters of this study were the initial notch sizes of 25.4㎜ and 6.4 ㎜ and the processing times of 2,000 sec. and 20 sec . The different notch sizes were used for the effects of the size of fracture process zone and specimen geometry, and the processing times for those of initial creep. However the load-point displacement rate in this study did not affect the experimental responses seriously. The average loads were calculated from the average external work of a series of tests, and average crack lengths were determined by using strain gages. Before the peak load, the resistance curve could be determined from the size of fracture process zone, but unstable crack propagation of 88㎜ occurred at the load-point displacement of 0.088∼0.154㎜ after the peak load. The average fracture energy density G$\_$F/$\^$ave/ = 115 N/m occurred during the unstable crack propagation. The fracture process zones were fully developed at the crack length of 111㎜, and the sizes of fracture process zone for initial notches of 25.4㎜ and 6.4㎜ were 86㎜ and 105㎜, respectively. Average fracture energy densities of the resistance curves after full development of fracture process zone were 229 N/m for the initial notch of 25.4㎜ and 284 N/m for 6.4㎜. The values were more than twice of G$\_$F/$\^$ave/.

Size Effect on Axial Compressive Strength of Concrete (콘크리트의 축압축강도에 대한 크기효과)

  • 이성태;김민욱;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.153-160
    • /
    • 2001
  • In this study, the size effect on axial compressive strength for concrete members was experimentally investigated. Experiment of mode I failure, which is one of the two representative compressive failure modes, was carried out by using double cantilever beam specimens. By varying the eccentricity of applied loads with respect to the axis on each cantilever and the initial crack length, the size effect of axial compressive strength of concrete was investigated, and new parameters for the modified size effect law (MSEL) were suggested using least square method (LSM). The test results show that size effect appears for axial compressive strength of cracked specimens. For the eccentricity of loads, the influence of tensile and compressive stress at the crack tip are significant and so that the size effect is present. In other words, if the influence of tensile stress at the crack tip grows up, the size effect of concrete increases. And the effect of initial crack length on axial compressive strength is present, however, the differences with crack length are not apparent because the size of fracture process zone (FPZ) of all specimens in the high-strength concrete is similar regardless of differences of specimen slenderness.

Notch Sensitivity Analysis for the Rock Fracture Toughness (암석의 파괴인성계수와 균열감응도의 해석)

  • 백환조
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.143-149
    • /
    • 1997
  • 암석의 파괴인성계수(fracture toughness)는 균열의 성장에 대한 암석의 저항을 나타낸다. 실험실에서 측정한 파괴인성계수는 일반적인 암석의 불균질성이나 이방성 외에도 시험편의 형상이나 하중조건에 의하여 크게 영향을 받는다. 따라서, 제한된 수의 시험편을 사용하여 측정된 파괴인성계수는 자료의 분산이 심하므로 실제 적용에 있어서 문제가 된다. 균열감응도란 파괴인성계수의 측정에 사용되는 시험편의 형상에 따라 결정되는 지수로서, 시험편의 파괴가 균열의 성장에 의한 것인지, 혹은 인장강도에 의한 것인지를 판별하는 기준이 된다. 이러한 균열감응도를 파악하여 암석의 파괴인성계수 측정에 유효한 시험편의 크기나 초기균열 길이의 범위를 설정할 수 있다. 이는 또한 실험실에서 측정된 차괴인성계수의 유효성 여부를 판별하는 기준으로 사용될 수 있다. 본 논문에서는 암석의 파괴인성계수의 측정에 흔히 사용되는 몇 가지 형태의 시험편들에 대하여 균열감응도를 계산하고 이에 따른 초기균열 길이의 범위를 제시하고자 한다.

  • PDF

Fatigue Crack Growth Analysis of Steel Deckplates Under Bending Stress (휨응력을 받는 바닥강판의 피로균열진전해석)

  • Choi, Jun Hyeok;Kyung, Kab Soo;Choi, Dong Ho;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.409-416
    • /
    • 1999
  • The fatigue crack growth analysis based on the fracture mechanics is useful to the estimation of the fatigue life on welded structures under cyclic loading. The analysis procedure in fatigue crack growth under uniform axial loading is applicable to bending fatigue problem as well. The intent of the present study is to show the procedure for calculating the fatigue crack propagation lifetimes of deckplates under bending stress and to explain the crack growth rates for the two dimensional crack problems. It is shown that the fatigue crack grows at a decreasing rate and the fatigue life depends on the initial crack length and the crack shape. The numerically predicted crack growth agree with the experimental data.

  • PDF

Fracture Behavior of Concrete and Equivalent Crack Length Theory (콘크리트의 파괴거동규명과 등가균열(等價龜裂)길이 이론확립(理論確立)에 관한 연구)

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.59-68
    • /
    • 1987
  • Several series of fracture tests were conducted to explore the fracture characteristics and to determine the fracture energy of concrete. A stable three-point bend test was employed to generate the load-deflection curves. The fracture energy may then be calculated from the area under the complete load-deflection curve. The initial notch-to-beam depth ratio (${\alpha}_0$/H) was varied from zero to 0.6. The prediction formula for the fracture energy of concrete is also derived and is found to depend on the tensile strength and aggregate size. The proposed fracture energy formula can be used for the fracture analysis of concrete structures. The present study also devises an equivalent crack length concept to predict the maximum failure loads of concrete beams. A simple formula for the equivalent crack length is proposed.

  • PDF

Crack Growth Life Prediction of Hollow Shaft with Circumferential Through Type Crack by Torsion (원주방향 관통형 균열을 가지는 중공축의 비틀림에 의한 균열성장수명 예측)

  • Yeonhi Kim;Jungsun Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2023
  • Power transmission shafts in rotary wing aircraft use a hollow shaft to reduce weight. We can apply linear elastic fracture mechanics to predict crack propagation behavior. This paper predicted crack growth life of a hollow shaft with a circumferential through-type crack by finite element analysis. A 2D finite element model was created by applying a torsion and forming elements considering cracks. We defined the initial crack length and performed the finite element analysis by increasing the crack length to derive stress intensity factor at crack tips. We defined the length just prior to the stress intensity factor exceeding the fracture toughness as the crack limit length. We calculated the crack limit length using a handbook and numerically integrated the crack growth rate equation to derive growth life of each crack. The growth life of each crack was compared to verify the proposed finite element analysis method.

Safety Margin Improvement Against Failure of Zr-2.5Nb Pressure Tube (Zr-2.5Nb압력관 파손에 대한 안전여유도 개선)

  • Jeong, Yong-Hwan;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.775-783
    • /
    • 1995
  • This study is to assess the effects of increasing wall thickness on the safety margin of pressure tube in operating and of lowering initial hydrogen concentration on the DHC growth in respect to the improvement of the reliability of pressure tube in CANDU reactors. The pressure tube with thicker wall of 5.2 mm shows much higher safety margin for flaw tolerance by 25% than the current 4.2mmm tube. The thicker pressure tubes have a great benefit in LBB assessment including the initial crack depth at which DHC occurs, the crack length at onset of leaking and the available time for action. The resistance for the pressure tube ballooning at LOCA accident is also increased with the thicker tube. The calculations for Heq concentration after 20 years of operation as a function of wall thickness and initial hydrogen concentration show that the 5.2 mm nil thickness tube with 5 ppm initial hydrogen concentration is the most resistant to DHC. with the lower initial hydrogen concentration, TSS temperature for the precipitation or hydride decreases and the crack growth during cooldown reduces.

  • PDF

Experimental Study on Fatigue Strength of Continuously Reinforced Concrete Pavements with Initial Transverse Cracks (초기균열간격에 따른 연속철근콘크리트 포장의 피로강도에 대한 실험적 연구)

  • Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1173-1178
    • /
    • 2007
  • A laboratory investigation is conducted to characterize and quantity fatigue life of continuously reinforced concrete pavement with initial cracks. Four specimens scaled were made based on results of finite-element analyses and stress-strain curve comparisons. Static tests were firstly performed to obtain magnitudes of static failure loads and to predict crack patterns before fatigue tests. The fatigue lives measured in the study were compared based on the initial crack spacing. The comparison indicates that the fatigue lives of most specimens increases with increasing the initial crack spacing. The results obtained in the study can be used for maintenance and retrofit of the continuously reinforced concrete pavements.

  • PDF

A Study on Fatigue Crack at Coped Stringers of the Plate Girder Subway-Bridge (플레이트거더 지하철교량 세로보의 피로 균열에 관한 연구)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.713-724
    • /
    • 2004
  • A fatigue crack found at the coped stringer of the old dismantled Dangsan Subway Bridge was numerically simulated. A model of a single span of the plate girder bridge with its beam elements was created and analyzed in order to obtain the nominal stress history caused by trains. A detailed FEM analysis of the coped stringer was conducted using a shell element model. A fracture mechanical model was used to estimate crack propagation. The stress intensity factors were calculated using the J-Integral method. The simulation with some reasonable assumptions showed that the calculated crack lengths were comparable to those found on the site.

Fracture Characteristics of Polypropylene Fiber Reinforced Concrete (폴리프로필렌 섬유보강 콘크리트의 파괴특성 연구)

  • Shin-Won Paik
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.230-240
    • /
    • 1997
  • An experimental research investigation of the fracture properties of polypropylene fiber reinforced concrete is reported. Fibers used in this experiment were two types, monofilament and fibrillated polypropylene fibers. Fiber length was 19 mm, and volume fractions were 0, 1, 2, and 3%. Also, as initial notch depths influence the fracture properties of fiber reinforced concrete, the notch depth ratios by specimen height were 0.15, 0.30 and 0.45. The main objective of this experimental program is to obtain the load-deflection and the load-CMOD curves, to investigate the fracture properties of the polypropylene fiber reinforced concretes. Therefore, the flexural specimen testings on the four-point bending were conducted. Then, the load-load point displacement and the load-crack mouth opening displacement curves were measured. The effects of different volume fractions of the monofilament and the fibrillated polypropylene fiber reinforced concrete on the compressive strength, flexural strength and toughness, stress intensity factor, and fracture energy were investigated through the experimental results.

  • PDF