• Title/Summary/Keyword: 초기 골치유

Search Result 4, Processing Time 0.024 seconds

Initial Changes of Implant Stability from Installation during Early Bone Healing (임플란트 식립 후 초기 안정성의 변화)

  • Park, Chan-Jin;Kim, Dae-Gon;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.272-279
    • /
    • 2013
  • The concept of implant stability was basically originated from the relative condition of bone-implant interface and has some meanings for evaluation of that interface. In addtion, it has been used for the investigation of initial bone healing process after fixture installation because a degree of micromotion around interface can affect unfavorable clinical results. The purpose of this study is to investigate the mode of initial bone healing from fixture installation through prospective trial. Thirty fixtures were consecutively installed in mandibles of 26 patients with single tooth loss area and then healing abutment were secured for one-stage surgery meothod. Resonance frequency analysis was performed with one week interval during 12 weeks and periapical radiographs were taken at each month. Although marginal bone level change was not shown through observation period (P>0.05), statistical difference of implant stability was shown through 4 and 6 week (P<0.05) and was not shown after 6 week (P>0.05) according to the bone quality. Initial bone healing process is a successive process of bone resorption and favorable bone healing result might be postulated at 4 week interval after installation through RFA.

The Effect of Negative electric field using charged PTFE membrane on Bone Healing of Rabbit Long Bone (Charged membrane에 의한 negative electric field가 토끼 장골의 골 치유에 미치는 영향)

  • Kwon, Yong-Su;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.551-562
    • /
    • 2004
  • The purpose of this study was to evaluate the effects of negatively electric field on bone healing in rabbit segmental long bone defects using negatively charged PTFE membrane. Ten millimeter segmental defects in the rabbit radius were used as the experimental model. After membranes were then charge injected using a corona-charging apparatus, the left defects were covered with non charged PTFE membranes as control groups, whereas the right defect was covered with negatively charged PTFE membranes as test group. The animals were divided into 4 groups of 2 rabbits each, and sacrificed at 2, 4, 6, and 8 weeks. Histomorphometric analysis showed a more newly formed bone in negatively charged membrane at early healing period. At 2 weeks, the proportion of new bone formation to total defect area was 0.32% in control group, 1.10% in experimental group. At 4 weeks, the proportion of new bone formation to total defect area was 6.86% in control, and 13.75% in experimental. At 6 and 8 weeks, no obvious difference was found between the two groups but newly formed bone in test groups were slightly more than that in control groups. In conclusion, negatively charged membranes showed more newly bone tissue than noncharged membranes at an early healing period. Although the number of samples was small, this study showed that the combination of negatively electrical stimulation and P1FE membrane may be of value in long bone healing.

EFFECT OF HYDRATION TIME OF DEMINERALIZED FREEZE-DRIED BONE ON EARLY BONE REGENERATION IN OSSEOUS DEFECTS IN RATS (백서에서 인간 탈회동결건조골 수화시간에 따른 초기 골치유)

  • Kim, Sang-Ryul;Kim, Su-Gwan;Jang, Hyun-Seon;Cho, Se-In
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.3
    • /
    • pp.188-195
    • /
    • 2002
  • The purpose of this investigation was to evaluate the relationship between the hydration time of demineralized freeze-dried bone (DFDB) and early new bone formation in rat calvarial defects filled with DFDB. Rats (n = 43) were divided into 4 experimental groups. Standard, transosseous circular defects of the calvaria were made midparietally. In experimental group 1, the defect was grafted immediately after soaking the DFDB. In experimental group 2, the defects were grafted with DFDB after soaking the DFDB for 10 minutes. In experimental groups 3 and 4, the defects were filled after soaking the DFDB for 30 and 60 minutes, respectively. Graft sites were analyzed histologically after healing periods of 1, 2, or 4 weeks. Each group showed similar bone regeneration at each time point by histological analysis. The results of this study were as follows: 1. After 1 week, a significant amount of inflammation, granulation tissue, and edema were found. A small amount of bone was seen, but the amount of bone did not differ between groups. 2. After 2 weeks, a small amount of new bone formation and DFDB resorption were observed. 3. After 4 weeks, a greater amount of new bone formation was observed. The greatest amount of bone formation occurred in experimental group 4 after 4 weeks. We conclude that the hydration time of DFDB does not affect new bone formation and that it is very important to control inflammation in bone grafting.

Review of the developmental trend of implant surface modification using organic biomaterials (생체활성 유기물로 표면이 개질된 임플란트 개발 추이 분석 연구)

  • Hwang, Sung-Taek;Han, In-Ho;Huh, Jung-Bo;Kang, Jeong-Kyung;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.254-262
    • /
    • 2011
  • Purpose: This study aims to evaluate and prospect for current research trend and developmental perspectives via analyzing recent biomaterial coated-implants study. Materials and methods: To investigate each subject respectively, several biomaterials that are using for implant surface coating were set as 'keywords'. By these keywords, major research groups in each subject were chosen, and research trend of them was analyzed. Trend of In vivo studies that examined selected biomaterials were analyzed to evaluate commercial potential. Results: The collagen research accounted for 40% of total implant study, which was the highest, and fibronectin, BMPs (bone morphogenetic proteins) and RGD (Arg-Gly-Asp) peptides followed, which were ranked in descending order. Furthermore, figures of all four research subjects were also increased with time, especially a sharp increase in RGD research. According to the results of major research group, collagen that was combined with other organic and inorganic biomaterials was mostly examined, rather than using collagen only. Major research groups investigating BMPs mostly focused on rhBMP-2. In animal studies, collagen was used as resorbable membrane in guided bone regeneration (GBR) or drug carrier, while BMPs were used with bone graft materials or coating material for titanium implant surface. Conclusion: There is not consistency of results even in identical subjects research field. Many studies are ongoing to optimize combination between mechanical surface treatment and biomaterials such as extracellular matrix component and growth factors.