• 제목/요약/키워드: 초기훈련집합 선정

검색결과 2건 처리시간 0.017초

능동적 학습을 위한 군집기반 초기훈련집합 선정 (Selection of An Initial Training Set for Active Learning Using Cluster-Based Sampling)

  • 강재호;류광렬;권혁철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권7호
    • /
    • pp.859-868
    • /
    • 2004
  • 본 논문에서는 능동적 학습이 보다 적은 수의 훈련예제로도 높은 학습성능을 달성할 수 있도록 군집화기법을 이용하여 초기훈련집합을 선정하는 방안을 제안한다. 본 제안 방안은 유사한 예제들보다는 다양한 예제들로 그리고 특수한 예제들보다는 보편적인 예제들로 구성한 집합이 학습에 유리할 것이라는 가정을 바탕으로, 먼저 k-means 군집화 기법으로 예제들을 군집화한 후, 각 군집을 가장 잘 표현하는 대표예제로 개별 군집의 중심점과 가장 가까운 예제를 선정하여 초기훈련집합을 구성한다. 또한 개별 군집의 중심점을 가상의 예제로 가정하여, 이와 연관된 대표예제의 카테고리를 부여함으로써 추가의 훈련예제로 활용하는 방안을 함께 제안한다. 여러 문서 분류 문제를 대상으로 실험한 결과, 본 제안 방안으로 선정한 초기훈련집합에서 출발한 능동적 학습이 임의로 선정한 초기훈련집합에서 출발한 경우에 비해 보다 적은 수의 훈련예제로도 동등한 성능을 달성할 수 있음을 확인하였다.

군집화 기법을 이용한 준감독 군집화의 훈련예제 선정 (Selecting Examples to Be Labeled for Semi-Supervised Clustering Using Cluster-Based Sampling)

  • 김종성;강재호;류광렬
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.646-648
    • /
    • 2004
  • 기계학습의 군집화(clustering) 기법은 예제들 간의 유사성에 근거하여 주어진 예제들을 무리 짓는 방법이다. 준감독(semi-supervised) 군집화는 카테고리가 부여된(labeled) 소수의 예제들을 적극적으로 활용하여 군집형태가 보다 자연스럽게 형성되도록 유도하는 군집화 방법이다. 준감독 군집화 문제에서 예제에 카테고리를 부여하는 작업은 현실적으로 극히 제한적이거나 카테고리를 부여하는데 소요되는 비용이 상당하므로, 제한된 자원 내에서 군집화에 효용성이 높을 예제들을 선정하여 카테고리를 부여하는 것이 필요하다. 본 논문에서는 기존 연구에서 능동적 학습의 초기 훈련예제 선정을 위해 제안된 군집기반 훈련예제 선정 방법을 준감독 군집화에 적용하여 군집 결과의 질을 향상시키고자 한다. 군집화를 이용한 예제 선정 방법은 유사한 예제들은 동일한 카테고리에 속할 가능성이 높다는 가정하에 전체 예제를 활용하여 선정하고자 하는 예제 수만큼 군집을 생성 한 후. 각 군집의 중심점에 가장 가까운 예제들을 대표 예제로 선정하여 훈련 집합을 구성하는 방법이다 본 논문에서는 문서를 대상으로 하는 준감독 군집화 실험을 통해, 카테고리를 부여할 예제를 임의로 선정한 경우에 비해 군집화를 이용한 훈련 예제들로 준감독 군집화를 수행한 경우가 보다 좋은 군집을 형성함을 확인하였다.

  • PDF