• Title/Summary/Keyword: 초기함수 조건

Search Result 278, Processing Time 0.03 seconds

Application of Flood Discharge for Gumgang Watershed Using GIS-based K-DRUM (GIS기반 K-DRUM을 이용한 금강권 대유역 홍수유출 적용)

  • Park, Jin-Hyeog;Hur, Young-Teck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2010
  • The distributed rainfall-runoff model which is developed in the country requires a lot of time and effort to generate input data. Also, it takes a lot of time to calculate discharge by numerical analysis based on kinematic wave theory in runoff process. Therefore, most river basins using the distributed model are of limited scale, such as small river basins. However, recently, the necessity of integrated watershed management has been increasing due to change of watershed management concept and discharge calculation of whole river basin, including upstream and downstream of dam. Thus, in this study, the feasibility of the GIS based physical distributed rainfall-runoff model, K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model) which has been developed by own technology was reviewed in the flood discharge process for the Geum River basin, including Yongdam and Daecheong Dam Watersheds. GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of the model. Problems in running time and inaccuracy setting using the existing trial and error method were solved by applying an auto calibration method in setting initial soil moisture conditions. The accuracy of discharge analysis for application of the method was evaluated using VER, QER and Total Error in case of the typhoon 'Ewiniar' event. and the calculation results shows a good agreement with observed data.

Analysis on the Rainfall Driven Slope Failure Adjacent to a Railway : Flume Tests (강우로 인한 철도 연변사면의 활동분석 : 실내모형실험)

  • SaGong Myung;Kim Min-Seok;Kim Soo-Sam;Lee In-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.83-91
    • /
    • 2006
  • Recently, the intensive rainstorm possibly induced by global warming plays a key role on the instability of railway adjacent slopes. The instability of slopes results as covering and loss of railway lines induced by slided soil mass. According to the site investigation on the failed slopes triggered by rainfall, low types of slope failure were observed: shallow, intermediate, gully erosion, and soil-rock interface failures. The observation reveals the different characteristics of slope failure depending on the thickness of soil layer, morphological features of slope, etc. Based upon the observations, flume tests were conducted to analyze the sliding mechanism of each failure. The variables of flume test are soil layer thickness, rainfall intensity, and morphology of slope under the constant condition of the percentage of fine, initial soil moisture content, slope angle and compaction energy. Test results show that shallow failure was mostly observed from the surface of the slope and caused by the soil erosion; in addition, compared to the other types of failure, the occurrence of initial erosion is late, however, the development of erosion is fast. In gully erosion failure, the collected water from the water catchment area helps erosion of the upper soil layer and transfer of residual corestone, which impedes the erosion process once the upper soil layers are eroded and corestone are exposed. The soil-rock interface failure shows the most fast initial erosion process among the failure types. Interestingly, the common feature observed from the different types of failure was the occurrence of the initial deformation near the toe of slopes which implies the existence of surbsurface flow along the downslope direction.

Simulation Conditions based Characteristics of Spatial Flood Data Extension (모의조건에 따른 홍수 유출자료의 공간적 확장 영향분석)

  • Kim, Nam Won;Jung, Yong;Lee, Jeong Eun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.6
    • /
    • pp.501-511
    • /
    • 2014
  • The effects of initial conditions and input values of the rainfall-runoff model were studied in the applications of a lumped concept model for flood event data extension. For the initial conditions of the rainfall-runoff model, baseflow effects and spatial distributions of saturation points ($R_{sa}$) for the storage function methods (SFM) were analyzed. In addition, researches on the effects of rainfall data conditions as input values for the rainfall-runoff model were performed. The Chungju Dam watershed was selected and divided into 3 catchments including smaller size of 22 sub-catchments. The observed discharge and inflow amounts at Yeongwol 1, Chungju Dam, and Yeongwol 2 water level stations were individually operated as criteria for flood data extension in 30 flood events from 1993 to 2009. Direct and base flow were distinguished from a stream flow. In order to test capability of flood data extension, obtained base flow was applied to the rainfall-runoff model for three water level stations. When base flow was adopted in the model, the Nash-Sutcliffe Efficiency(NSE) was increased. The numbers of over satisfaction for model performance (>0.5) were increased over 10%. Saturation points ($R_{sa}$) which strongly influence the runoff amount when rainfall starts were optimized based on the runoff amount at three water level stations. The sizes of saturation points for three locations were similar which means saturation point size is not depending on the runoff amount. The effects of rainfall information for flood runoff were tested at 2002ev1 and 2008ev1. When increased the amount of rainfall information, the runoff simulations were closer to the simulations with full of rainfall information. However, the size of improvement was not substantial on rainfall-runoff simulations in terms of the size of total amount of rainfall.

Solving Probability Constraint in Robust Optimization by Minimizing Percent Defective (불량률 최소화를 통한 강건 최적화의 확률제한조건 처리)

  • Lee, Kwang Ki;Park, Chan Kyoung;Kim, Geun Yeon;Lee, Kwon Hee;Han, Sang Wook;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.975-981
    • /
    • 2013
  • A robust optimization is only one of the ways to minimize the effects of variances in design variables on the objective functions at the preliminary design stage. To predict the variances and to formulate the probabilistic constraints are the most important procedures for the robust optimization formulation. Though several methods such as the process capability index and the six sigma technique were proposed for the prediction and formulation of the variances and probabilistic constraints, respectively, there are few attempts using a percent defective which has been widely applied in the quality control of the manufacturing process for probabilistic constraints. In this study, the robust optimization for a lower control arm of automobile vehicle was carried out, in which the design space showing the mean and variance sensitivity of weight and stress was explored before robust optimization for a lower control arm. The 2nd order Taylor expansion for calculating the standard deviation was used to improve the numerical accuracy for predicting the variances. Simplex algorithm which does not use the gradient information in optimization was used to convert constrained optimization into unconstrained one in robust optimization.

태양계의 물: 기원과 진화

  • Choe, Byeon-Gak;Choe, Hye-Rim
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.3-8
    • /
    • 2005
  • 지구는 현재 태양계에서 액체 상태의 물이 표면에 존재하는 유일한 천체이다. 하지만, 고체 또는 기체 상태의 물은 태양계의 다른 행성이나, 위성, 소행성, 혜성 등에도 풍부하게 존재하고 있다. 풍부한 액체 상태의 물은 지구 표면에서 일어나고 있는 기후의 변화, 해류의 이동, 퇴적 및 침식 작용, 화산활동과 같은 여러 지구과학적 현상에 밀접하게 관여하고 있을 뿐 아니라 생명의 탄생과 진화에도 매우 중요한 역할을 하였다. 현재 지구 표면에 액체 상태의 물이 존재할 수 있는 이유는 태양으로부터의 거리, 지구의 조성 및 크기 등과 관련된 지구 표면의 물리-화학적 조건이 액체 상태의 물이 존재할 수 있는 조건과 일치하고 있기 때문이다. 이와는 달리 지구보다 태양에 더 가깝게 위치하고 있고, 두터운 이산화탄소 대기를 갖고 있어 표면의 온도가 매우 높은 금성의 경우 H2O는 기체 상태로 존재하며, 지구보다 더 멀리 떨어져 있고 희박한 대기를 갖고 있는 화성의 경우에는 현재 H2O가 고체 즉 얼음의 형태로 존재한다. 태양계를 탄생시킨 태양계 성운에서는 압력이 너무 낮아 액체 상태의 물이 존재할 수 없으며, 고온에서는 기체 상태로 매우 낮은 저온에서는 얼음의 형태, 또는 함수 광물 내에 포함되어 존재할 수 있다. 지구와 같은 규모의 행성은 비교적 중력이 작아 태양계 성운의 기체를 거의 끌어들이지 못했다. 따라서 현재 지구에 존재하는 물은 대부분은 고체 상태로 지구에 집적되었을 것이다. 하지만 지구가 탄생한 위치에서 초기 태양계의 온도는 얼음이 형성되기에는 너무 높았기 때문에 좀 더 먼 곳에서(현재의 목성 위치보다 바깥쪽)에서 생성된 얼음 즉, 혜성이 태양계 안쪽으로 들어와 지구에 물을 공급했거나 함수광물을 포함하고 있는 소행성(예를 들어 CI chondrites와 같은 조성의)이 물을 가져왔을 것으로 생각되고 있다.서의 활성화는 어미 변환과 관련된 영역이라기보다는 산출시 관련되는 articulation, motor coordinate관련 영역으로 추정되고, 측두엽의 활성화는 형태소, 의미 관련 지식의 data base로 추정된다. 또한 우반구 전두엽 부분에서 관찰된 활성화는 억제관련 영역으로 짐작된다.러한 동물실험이 그 기초를 제공해 줄 수 있을 것이다. 또한 행동성향 및 기억의 종류에 따른 약물효과의 차이는 기억과 관련된 질병인 알츠하이머 환자에 있어 개개인에게 맞는 적절한 특징적인 치료약물이 존재할 것이라는 가능성을 제공해줄 뿐만 아니라 학습과 기억력 증진 효과를 기대해 볼 수 있을 것이라고 생각된다. 및 지역산업발전의 기획${\sim}$조정기구로서, 선진국의 지역발전기구(Regional Development Agency : RDA)인 지역전략산업기획단이 2002년도부터 산업자원부와 9개 시도에 의해 설립되어 지역네트워크의 활성화와 클러스터의 형성 촉진을 하게 되었고 2004년도에는 13개시도로 확대${\sim}$운영되고 있고, 지역특화사업(H/W)과 지역산업기술개발과제(S/W)와 함께 패케지 형태로 지원되며, 주요역할은 크게 지역산업의 정책기획 분야와 평가관리, 지역혁신역량 조사 및 DB구축 등으로 구분된다. 그중에서도 권역별, 지역별, 지역산업진흥사업 육성과 중장기 산업발전계획을 수립하기 위하여 지역혁신역량을 바탕으로 한 지역 Technology Road Map(TRM)작성사업은 전국공통의 1단계 사업으로 실시 ?榮쨉?, 2005년 3월 기준으로 9개 지역(강원, 대전, 충남, 충북, 경북, 울산, 전남, 전북, 제주) 26개 산업분야를 대상으로 23개가 완료된 상황이다. 이를 근거로 한 지역정책과 R&D 과제 및 필요 인프라의 도출이 체계적으로 구축되어 지역산업 발전을 위한

  • PDF

A Study on the RDF Manufacturing of Coffee grounds by using Pilot scale Oil-drying Equipment (Pilot scale 유중건조 장비를 이용한 커피찌꺼기의 고형연료화 연구)

  • Kwon, Ik-Beom;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.443-450
    • /
    • 2019
  • We studied to find the optimal manufacturing conditions of coffee grounds sludge RDF with oil drying method. We expanded the lab scale to pilot scale to compare the efficiency of the oil-drying equipment and The selection of the ratio of coffee grounds and oil, the setting temperature, and the temperature change and water content with time were measured. In order to analyze the characteristics of the research results, characteristics of solid fuels produced(Coffee grounds of oil-dried) by calorimeter, TGA, combustion equipment, and combustion gas measuring instrument were analyzed. As a result, the ratio of oil to coffee grounds was 4: 1, and when the setting temperature was set to $300^{\circ}C$, the water content reached 10wt.% or less within 20 minutes. ln addition, it showed high calorific value of 6,273kcal/kg. However, coffee grounds had a similar composition to wood and showed high luminance and produced a lot of CO in combustion gas. As a result, it is considered to be unsuitable for thermoelectric power plant and camping fuel, but the initial ignition speed is high and the heat generation is high, so it is considered that it can replace the fuels for current use.

Time-dependent Reduction of Sliding Cohesion due to Rock Bridges along Discontinuities (암석 브리지에 의한 불연속면 점착강도의 시간의존성에 관한 연구)

  • 박철환;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • This paper is to introduce an article published in Rock Mechanics and Rock Engineering, 2003. In this research, a fracture mechanics model is developed to illustrate the importance of time-dependence far brittle fractured rock. In particular a model is developed fer the time-dependent degradation of rock joint cohesion. Degradation of joint cohesion is modeled as the time-dependent breaking of intact patches or rock bridges along the joint surface. A fracture mechanics model is developed utilizing subcritical crack growth, which results in a closed-form solution for joint cohesion as a function of time. As an example, a rock block containing rock bridges subjected to plane sliding is analyzed. The cohesion is found to continually decrease, at first slowly and then more rapidly. At a particular value of time the cohesion reduces to value that results in slope instability. A second example is given where variations in some of the material parameters are assumed. A probabilistic slope analysis is conducted, and the probability of failure as a function of time is predicted. The probability of failure is found to increase with time, from an initial value of 5% to a value at 100 years of over 40%. These examples show the importance of being able to predict the time-dependent behavior of a rock mass containing discontinuities, even for relatively short-term rock structures.

Experimental Studies of Shearing Properties on Compacted Nakdong River Silty Sands under Unconsolidated Undrained Condition (비압밀비배수조건에서 다져진 낙동강 실트질 모래의 전단거동에 대한 실험적 연구)

  • Khin, Swe Tint;Kim, Young-Su
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.57-62
    • /
    • 2010
  • In this study, the effect of different silt contents on the shear characteristics of silty sands was evaluated. Two series of triaxial compression tests were performed on the cylindrical specimens of compacted Nakdong river sand with 10% and 30% silt contents under unconsolidated undrained condition. All identical specimens were prepared to compact with same initial water content for five layers and saturated using control panel and then sheared under initial effective confining pressure, 100 to 400kPa. All specimens exhibited a strain softening tendency after failure in stress-strain curves and deviator stresses of specimens with 10% silt content were greater than those of specimens with 30% silt content. Pore water pressures of specimens with 10% silt content were observed negative(i.e. swelling) due to increasing void ratio after failure but those of specimens with 30% silt content were shown only positive. The behavior of compacted cylindrical specimens with low silt content was more dilative than that of high silt content. Peak deviator stresses decreased as increasing silt content and peak pore water pressures increased as increasing silt content.

An Evaluation of Soil-Water Characteristic Curve Model for Compacted Bentonite Considering Temperature Variation (온도 변화를 고려한 압축 벤토나이트 완충재의 함수특성곡선 모델 평가)

  • Yoon, Seok;Jeon, Jun-Seo;Go, Gyu-Hyun;Kim, Geon-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.33-39
    • /
    • 2020
  • A geological repository has been considered as an option for the disposal of high-level radioactive waste (HLW). The HLW is disposed in a host rock at a depth of 500~1,000 meters below the ground surface based on the concept of engineered barrier system (EBS). The EBS is composed of a disposal canister, buffer material, backfill material, and gap-filling material. The compacted bentonite buffer is very important since it can restrain the release of radionuclide and protect the canister from the inflow of ground water. The saturation of the buffer decreases because high temperature in a disposal canister is released into the surrounding buffer material, but saturation of the buffer increases because of the inflow of ground water. The unsaturated properties of the buffer are critical input parameters for the entire safety assessment of the engineered barrier system. In Korea, Gyeongju bentonite can be considered as a candidate buffer material, but there are few test results of the unsaturated properties considering temperature variation. Therefore, this paper conducted experiment of soil-water characteristic curve for the Gyeongju compacted bentonite considering temperature variation under a constant water content condition. The relative error showed approximately 2% between test results and modified van-Genuchten model values.

An analysis of runoff characteristic by using soil moisture in Sulma basin (설마천 연구지역에서의 토양수분량을 활용한 유출 발생 특성분석)

  • Kim, Kiyoung;Lee, Yongjun;Jung, Sungwon;Lee, Yeongil
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.615-626
    • /
    • 2019
  • Soil moisture and runoff have very close relationship. Especially the water retention capacity and drainage characteristics of the soil are determined by various factors of the soil. In this study, a total of 40 rainfall events were identified from the entire rainfall events of Sulma basin in 2016 and 2017. For each selected events, the constant-K method was used to separate direct runoff and baseflow from total flow and calculate the runoff coefficient which shows positive exponential curve with Antecedent Soil Moisture (ASM). In addition to that, the threshold of soil moisture was determined at the point where the runoff coefficient starts increasing dramatically. The threshold of soil moisture shows great correlation with runoff and depth to water table. It was founded that not only ASM but also various factors, such as Initial Soil Moisture (ISM), storage capacity of soil and precipitation, affect the results of runoff response. Furthermore, wet condition and dry condition are separated by ASM threshold and the start and peak response are analyzed. And the results show that the response under wet condition occurred more quickly than that of dry condition. In most events occurred in dry condition, factors reached peak in order of soil moisture, depth to water table and runoff. However, in wet condition, they reached peak in order of depth to water table, runoff and soil moisture. These results will help identify the interaction among factors which affect the runoff, and it will help establish the relationship between various soil conditions and runoff.