• Title/Summary/Keyword: 초기탄성계수

Search Result 181, Processing Time 0.032 seconds

Sensitivity Analysis of Generalized Parameters on Concrete Creep Effects of Composite Section (합성단면의 콘크리트 크리프 효과에 대한 일반화 매개변수의 민감도 분석)

  • Yon, Jung-Heum;Kim, Eui-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.629-638
    • /
    • 2009
  • In this paper, the existing formulas of the step-by-step method were generalized for effective estimation of responses of complicated composite sections due to long-term deformation of concrete. The initial transformed section properties of the composite section were derived from material and section properties of concrete section and sections which confine the longterm deformation of concrete. The transformed section properties at each step were derived from the effective modulus of elasticity considered the creep coefficient variation. Improved formulas of the step-by-step method for generalized responses were derived by introducing 5 generalized parameters. The formulas can be more simplified by applying constant increment of creep coefficient at each step. The constant increment of creep coefficient at each step can also reduce computing time and make equal computing error of each step. The generalized responses for axial elastic strain of concrete section were most sensitive to the area rate of concrete section, and the ratio of the second moment of the confining section area was more sensitive than that of the concrete section. Those for elastic curvature of concrete section were most sensitive to the ratio of the second moment of concrete section area.

Numerical Analysis of the Effects of Stress Anisotropy and Tunnel Excavation Shape on Initial Elastic-wall Displacement (지반응력의 비등방성에 따른 터널측벽의 초기탄성변위 특성에 대한 수치해석적 연구)

  • 김상환;정혁일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.33-42
    • /
    • 2002
  • Ground reaction curve is a very important information for evaluating the side wall displacements and installation time of the tunnle support. The ground reaction curve can be estimated by analytical closed form solutions derived on the supposition of circular section and isotropic stress condition. The conditions of stress field and tunnel configurations, however, are quite different in practice. Therefore, it is necessary to investigate the effects of stress anisotropy and tunnel configurations in order to use simply in practical design. This paper describes a study of influence factors in the ground reaction curve. In order to evaluate the applicability of analytical closed form solution in practical design, two sets of parametric studies were carried out by numerical analysis in elastic tunnel behaviour: one set of studies investigated the influence of the K and the other set investigated the influence of the tunnel configurations such as circular and horse-shoe shape. In the studies, K value varies between 0.5 and 3.0, initial ground vertical stress varies between 5~30MPa far each K values. The results indicated that the self-supportability of ground is larger in the ground having lower K value. However, it is suggested that the applicability of closed form solution may not be adequate to determine directly the installation time of the support and self-supportability of ground. It is necessary to consider stress anisotropy and tunnel configurations.

Seismic Velocity Change Due to Micro-crack Accumulation of Rock Samples from Seokmo Island, Korea (손상 진행에 따른 석모도 암석 시험편의 탄성파속도 변화)

  • Lee, Sang-Kyu;Choi, Ji-Hyang;Cheon, Dae-Sung;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.324-334
    • /
    • 2011
  • Seismic wave velocity change has been monitored due to the accumulation of micro-cracks by uniaxial loads on the rock samples from Seokmo Island with stepwise increase in 5 stages. After the load was applied up to 95% of UCS, P- and S-wave velocities varied in ranges of 0.9 ~ 18.3% and 2.8 ~ 14.8% of fresh rock sample velocities, respectively. Unlike seismic velocity of the dry rock samples that showed overall decreases after the loading, velocity changes of saturated rock samples were much more complicated. These seemed to be due to the mixture of two contradictory mechanisms; i.e. accumulation of micro-crack causes an increase in porosity and a decrease in wave velocity, while saturation causes an increase in wave velocity. Most of tested rocks showed a trend of velocity increase with low axial load and then velocity decrease at later stages. Starting stage of velocity decrease differs from samples to samples. After the failure of rock occurred, noticeable increases of porosity and decreases of wave velocity have been observed. It showed overall trend that the more the quartz contents and the lower the silicate, the higher the Young's modulus.

A Study on the Characteristics of Direct Tensile Fatigue of the Domestic PS Bar at High Stress Range (국산 PS 강봉의 고응력범위에서의 직접 인장피로 특성)

  • Yoo, Sung Won;Suh, Jeong In
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.137-145
    • /
    • 2003
  • In this study, direct tensile fatigue tests of the PS bar were performed in terms of diameter, minimum stress level, and maximum stress level. In the static test, the stress - strain curve and ultimate streng th of the PS bar were determined. Results of the fatigue test indicate that the diameter of the PS bar was not influenced by fatigue life. Minimum stress also had quite an influence on the fatigue of the PS bar. Thus, the fatigue characteristic equation was proposed in terms of stress range and minimum stress through statistical process. Strains on specimen that loaded direct tension were measured in the fatigue test, with the secant modulus of elasticity calculated from measured strains. The strain development consisted of three different stages, i.e., rapid increases during the initial fatigue life, uniform increases during the middle stage, and rapid increases until failure. The secant modulus of elasticity decreased during the fatigue life with increasing strain. However, stress level seemed to have no influence on the secant modulus of elasticity.

Vibration Characterization of Cross-ply Laminates Beam with Fatigue Damage (피로 손상을 입은 직교 복합재료 적충보의 진동 특성)

  • 문태철;김형윤;황운봉;전시문;김동원;김현진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • A new non-destructive fatigue prediction model of the composite laminates is developed. The natural frequencies of fatigue-damaged laminates under extensional loading are related to the fatigue life of the laminates by establishing the equivalent flexural stiffness reduction as a function of the elastic properties of sublaminates. The flexural stiffness is derived by relating the 90-ply elastic modulus reduction, and using the laminate plate theory to the degraded elastic modulus and the intact elastic modulus of other laminates. The natural frequency reduction model, in which the dominant fatigue mode can be identified from the sensitivity scale factors of sublaminate elastic properties, provides natural frequency vs. fatigue cycle curves for the composite laminates. Vibration tests were also conducted on $[{90}_2/0_2]_s$ carbon/epoxy laminates to verify the natural frequency reduction model. Correlations between the predictions of the model and experimental results are good.

  • PDF

Flexural Fatigue Behavior of Unreinforced Polyester Polymer Concrete Beams (무근 폴리에스터 폴리머 콘크리트보의 휨피로 거동)

  • 연규석;박제선;김광우;성기태;김태경
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.179-186
    • /
    • 1993
  • 본 연구는 무근 폴리에스터 폴리머 콘크리트보의 휨피로 거동을 구명키 위한 것으로서 초기균열깊이와 높이의 비 (a/h)를 0, 0.2, 0.4로 하고 응력수준을 45%, 55%, 65%로 하여 피로 시험을 실시한 것이다. 그 결과 초기균열깊이가 커질수록 피로수명이 짧아졌으며, 피로수명비에 따른 휨인장변형도는 균열깊이가 클수록 작아졌다. 또한 휨탄성계수는 피로수명비 0.2에서 0.6정도까지는 선형적인 변화를 보였으나, 초기와 말기에는 비선형적인 변화를 보여주었다. 그리고 응력수준과 균열깊이가 커질수록 취성적인 성질이 더 크게 나타남을 알 수 있었다.

The Influence of elastic stiffness for a Starting State of Linear Actuator (선형액추에이터의 초기구동에 미치는 탄성계수의 영향)

  • Woo, Byung-Chul;Kang, Do-Hyun;Hong, Do-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.77-79
    • /
    • 2004
  • A typical conventional systems of a linear motion use rack and pinions or ball screws to convert rotary motions from DC servo motors. A linear motor has been used a several field for a MEMS technology and a aircraft carrier. We was studied a transient response of a linear actuator with a damping ratio, spring constant and a pressed power.

  • PDF

Structural Analysis and Design method of Concrete in the IT Era (IT 시대 콘크리트 구조물의 구조해석 및 설계 기법)

  • 김종우;문정호
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.18-23
    • /
    • 2002
  • 구조재료로써 콘크리트의 물리적 특성은 강재와는 달리 시간 의존적이라고 할 수 있다. 즉, 타설 후 재령이 경과함에 따라 압축강도와 탄성계수가 증가함은 물론, 콘크리트 내의 수분이 대기 상태로 증발하면서 부재가 수축하는 건조수축 및 외력의 증감없이 변형률이 증가하는 크리프 특성 등을 가지고 있다. 또한, 콘크리트는 시멘트의 수화반응에 의해 시공초기에 재료의 온도가 급격히 상승하는 발열특성도 동시에 가지고 있다. 이러한 특성들은 구조물의 설계시 무시할 수 없으며, 각 시공단계 및 완성단계의 구조물의 응력에 커다란 영향을 미치게 된다.(중략)

A Study on Seismic Performance Evaluation of Tunnel to Considering Material Nonlinearity (재료의 비선형성을 고려한 터널의 내진성능평가에 관한 연구)

  • Choi, Byoungil;Ha, Myungho;Noh, Euncheol;Park, Sihyun;Kang, Gichun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.92-102
    • /
    • 2022
  • Various numerical analysis models can be used to evaluate the behavior characteristics of tunnel facilities which are representative underground structures. In general, the Mohr-Coulomb model, which is most often used for numerical analysis, is an elastic-perfect plastic behavior model. And the deformation characteristics are the same during the load increase-load reduction phase. So there is a problem that the displacement may appear different from the field situation in the case of excavation analysis. In contrast, the HS-small strain stability model has a wide range of applications for each ground. And it is known that soil deformation characteristics can be analyzed according to field conditions by enabling input of initial elastic modulus and nonlinear curve parameter and so on. However, civil engineers are having difficulty using nonlinear models that can apply material nonlinear properties due to difficulties in estimating ground property coefficients. In this study, the necessity of rational model selection was reviewed by comparing the results of seismic performance evaluation using the Mohr-Coulomb model, which civil engineers generally apply for numerical analysis of tunnels, and the HS Small strain Stiffness model, which can consider ground nonlinearity.

Development of Thermal Stress Measuring System (온도응력 측정용 시험장치의 개발)

  • 전상은;김국한;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.228-236
    • /
    • 2001
  • Even though numerous researches have been performed for the prediction of thermal stresses in mass concrete structures by both analytical and experimental means, the limitations exist for both approaches. In analytical approach, the fundamental limitation is derived from the difficulty of predicting concrete properties such as modulus of elasticity, coefficient of thermal expansion, etc.. In experimental approach, there are many uncertainties related to in-situ conditions, because a majority of researches have focused on measuring thermal stresses in actual and simulated structures. In this research, an experimental device measuring thermal stresses directly in a laboratory setting is developed. The equipment is located in a temperature chamber that follows the temperature history previously obtained from temperature distribution analysis. Thermal strains are measured continuously by a strain gauge in the device and the corresponding thermal stresses are calculated simply by force equilibrium condition. For the verification of the developed device, a traditional experiment measuring thermal strains from embedded strain gauges is performed simultaneously. The results show that the thermal strain values measured by the newly developed device agree well with the results from the benchmark experiment.