• Title/Summary/Keyword: 초기반사음

Search Result 22, Processing Time 0.02 seconds

A Study on the Validity of the Prediction of Binaural Parameters by 5 Channel Microphone System (5채널 마이크로폰 시스템을 활용한 공간감 지표 예측의 타당성에 관한 연구)

  • Jang Jae-Hee;Oh Yang-Ki;Jeong Dae-Up;Jeong Hyok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.103-110
    • /
    • 2005
  • Providing adequate amount of spatial impression for spaciousness) has been known to be one of the most important design considerations for the good acoustics of rooms for music. and the measurement, of room acoustics using parameters. such as LEF and IACC, forms an essential part of such evaluation. However. it is unavoidable to use different transducers (figure of eight microphones. head and torso) for the measurement of each parameter and it tends to make the measurement procedure complicated. The Present work tried to provide a simpler way to measure these binaural room acoustic parameters including monaural ones with a single measurement system using both spatial information collected through a 5-channel microphone and a trained neural network. A computer simulation program, CATT-Acoustic V7.2. which allowed us to obtain exactly the same spatial information as a 5-channel microphone was used. since it requires quite a large amount of data for practical training of a neural network. Since each reflection has different energy. delay and direction, energy should be integrated properly. the concept of ray tracing method was applied inversely in this work. Also applying weightings according to the delay times was considered in this work. Finally, predicted results were compared with the measured data md their correlations were analyzed and discussed.

Cable-free Seismic Acquisition System (무선 탄성파 탐사 시스템)

  • Lee, Donghoon;Kim, Byung-Yeop;Jang, Seonghyung
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.164-173
    • /
    • 2016
  • Cable-free seismic technology is to acquire seismic data with independent receivers which are not connected by cables. This is an effective method for survey designs with less topographical conditions. With technology advancement for cable-free receivers, reliable data quality, easy deployment, and picking up the receivers, the cable-free technology has begun to apply to land seismic acquisition. In this study we introduced a cable-free seismic system and its equipment. We tried to build up the cable-free seismic technology through the field application. In the seismic tomography field applications, the seismic signals of the cable-free receiver and cabled receiver with the same distance from the source show the same phase in early stage. The difference of the first arrival times between two signals is less than 0.4 ms, which could be accepted. In the field application for seismic reflection exploration, we acquired shot gathers with different source depth and dynamite charge. The shot gathers from cable-free and cabled system are similar to each other. With an efficient method for receiver deployment and survey design, the application of the cable-free technology will increase.