• 제목/요약/키워드: 초기구조모델

검색결과 697건 처리시간 0.026초

음성의 시간변이와 상태분할을 고려한 강건한 문맥의존 음향모델에 관한 연구 (A study on the robust context-dependent acoustic models by considering the state splitting and the time variant of speech)

  • 오세진;김광동;노덕규;정현열
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.229-231
    • /
    • 2003
  • 일반적으로 음성은 시간함수로 표현되며 음성인식에서 표준모델을 모델링하는 것은 매우 중요한 문제이다. 음절 단어, 연속음성을 발성할 때 자음과 모음에 따라 발성시간에 차이가 있으며 이를 잘 모델링하는 것 또한 음성인식에서는 중요한 문제라고 할 수 있다. 따라서 본 연구에서는 강건한 음향모델을 학습하기 위해 시간의 변화와 상태분할과정에서의 모델의 변화를 고려하여 다양한 구조의 초기모델을 작성하였다. 각 초기모델에 의한 HM-Net 문맥의존 음향모델은 음소결정트리 기반 SSS 알고리즘(PDT-SSS)을 이용하였다. PDT-SSS 알고리즘은 미지의 문맥정보를 해결하기 위해 문맥방향과 시간방향으로 목표 상태수에 도달할 때까지 상태분할을 수행하여 모델을 작성하는 방법이다. 음성의 시간변이를 고려한 강건한 문맥의존 음향모델을 작성하기 위해 설정한 각 모델의 구조에 대한 유효성을 확인하기 위해 국어공학센터의 452 단어를 대상으로 음소와 단어인식 실험을 수행한 결과. 음소인식의 경우 상태수 2000개에서 2상태 구조의 모델에 비해 4상태 구조가 약 11.4% 향상된 인식성능과 39.2초의 인식시간을 단축할 수 있었다. 또한 단어인식의 경우 상태수 2000개에서 1상태 구조의 모델에 비해 4상태 구조가 약 5% 향상된 인식성능과 4상태 구조에서 한 단어를 인식하는데 평균 0.8초가 소요되었다. 따라서 강건한 문맥의존 음향모델을 작성하기 위해 수행한 초기모델의 구조에 관한 연구가 향후 음성인식 시스템을 구축하는데 유효함을 확인할 수 있었다.

  • PDF

뉴로-퍼지 모델의 구조 학습을 이용한 단기 전력 수요 예측 시스템 (Short-Term Electrical Load Forecasting using Structure Identification of Neuro-Fuzzy Models)

  • 박영진;심현정;왕보현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.102-106
    • /
    • 2000
  • 본 논문은 뉴로-퍼지 모델의 구조학습을 이용하여 한 시간 앞의 전력 수요를 예측하는 체계적인 방법을 제안한다. 제안된 예측시스템은 시간 단위로 뉴로-퍼지 모델을 재학습하기 위해서 필요한 초기 구조를 요일 유형과 시간 별로 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점의 요일 유형에 따라 선택된 초기 구조를 이용하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 실제 전력 수요 데이터를 이용하여 모의 실험을 수행한다. 실험결과 제안된 방법은 기존의 다층 퍼셉트론을 이용한 방법과 비교하여 예측의 정확도 측면과 신뢰도 측면에서 모두 향상된 결과를 얻는다.

  • PDF

뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측 (Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting)

  • 박영진;황보현
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.283-287
    • /
    • 2004
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시접에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간, 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고, 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 시간, 일간, 주간 단위 예측 (Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting)

  • 박영진;최재균;왕보현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.323-326
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

Smooth Background Model(SBM)을 이용한 가중 키리히호프 중합전 심도구조보정 (Weighted Kirchhoff Prestack Depth Migration using Smooth Background Model)

  • 고승원;양승진;신창수
    • 지구물리와물리탐사
    • /
    • 제4권3호
    • /
    • pp.84-88
    • /
    • 2001
  • 탄성파 구조보정에서 초기속도모델과 실제지층속도와의 오차는 심각한 이미지 왜곡을 초래할 수 있다. 따라서, 초기속도 모델의 설정은 성공적인 구조보정을 위한 중요한 요소 중의 하나이다. 초기속도모델로서 단순지층 모델을 적용할 경우, 속도 차가 큰 지층경계면에서는 기존의 주시계산 방법으로는 정확한 주시를 계산할 수 없다. 또한 실제 지하내부가 갖는 선형적 속도변화를 적절히 표현할 수 없다. 본 연구에서 초기모델로 적용한 Smooth Background Model(이하 SBM)은 깊이에 따라 지층속도가 선형적으로 변화하는 모델로서 지하내부의 특성을 적절히 표현할 수 있고, Vidale 방법과 같은 주시계산 알고리즘을 적절히 적용할 수 있다. 본 연구에서는 중합전 구조보정을 위해 키리히호프 연산자를 사용하였으며 모델링을 통해 얻은 절대 진폭값을 가중치로 적용하므로써 초기 모델에 대한 진진폭을 고려하였다. 구조보정을 위한 초기모델은 중합속도를 이용하여 결정하였고, 이를 실제자료에 적용하여 보았다.

  • PDF

뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 신뢰도 계산 (Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting: Reliability Computation)

  • 심현정;박래정;왕보현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 A
    • /
    • pp.318-322
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용한 단기 전력 수요 예측시스템에서 예측치별로 신뢰도를 계산하는 체계적인 방법을 제안한다. 예측시스템의 신뢰도를 추정하는 작업은 특히 신경회로망과 같은 경험적 모델을 실제 활용하기 위해서 필수적인 연구로 인식되고 있다. 본 논문에서 제안하는 출력별 신뢰 구간 계산 방법은 지역 표현하는 뉴로-퍼지 모델의 특성을 활용하여 학습된 퍼지 규칙 각각에 대해 신뢰도를 추정하는 Local reliability measure 기법을 사용한다. 제안된 신뢰도 계산이 가능한 단기 전력 수요 예측시스템은 먼저 결정 트리를 이용하여 초기 구조를 생성하고, 이를 초기 구조 뱅크에 저장한다. 저장된 초기 구조 뱅크를 이용하여 뉴로-퍼지 모델을 학습하고, 학습된 퍼지 규칙의 신뢰도를 추정한다. 제안된 시스템의 실효성을 검증하기 위해서 한국 전력에서 수집한 1996년과 1997년의 실제 전력 수요 데이터를 이용하여 한 시간 앞의 수요를 예측하는 모의 실험을 수행하고 실험 결과를 비교 분석한다.

  • PDF

전자시장에서의 네트워킹 비즈니스 모델 (Networking Business Model In Electronic Market)

  • 이경전;전형원
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2000년도 추계학술대회 및 정기총회
    • /
    • pp.244-247
    • /
    • 2000
  • 인터넷이 발전하고 성장함에 따라 전자상거래(Electronic Commerce)는 초기의 단선적인 관계와 집중화된 구조를 탈피하여, 상호 연관적인 관계 및 분산되고 개방적인 구조를 바탕으로 수행되고 있다. 즉, 인터넷의 본질적인 특성인 네트워크를 기반으로 하는 시장구조가 형성되고 있으며, 이러한 네트워크 시장구조를 기반으로 하여, 새로운 형태의 비즈니스 모델이 출현하고 있다. 네트워크 효과(Network Effect)를 기반으로 하는 네트워킹 비즈니스 모델은 초기의 비즈니스 모델과는 다른 형태의 정보흐름(Information Process) 및 구조(Architecture)를 가지며, 이로 인해 전자시장(Electronic Market)에서 참여자의 역할 및 사업 전략, 수익모델 등이 변화되고 있다. 이 논문에서는 네트워킹 비즈니스 모델이 가지는 구조 및 특성을 규명하고, 사례분석을 통해 다양한 형태의 네트워킹 비즈니스 모델을 분류하여, 네트워킹 비즈니스 모델의 활용가능성을 모색해보고자 한다.

  • PDF

복합재 구조물의 초기파손후의 거동묘사를 위한 모델과 해석방법 (Model and Method for Post-Failure Analysis of Composite Structure)

  • 김용완;황창선
    • 대한기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.506-513
    • /
    • 1992
  • 본 연구에서는 복합재 구조물에 대하여 유한요소해석법에 현상학적 모델인 전 단지연해석을 도입하여 강성저하와 모재파손을 예측하고 변형률을 매개변수로 한 Wei- bull 함수를 섬유파손해석에 도입하여 초기파손후의 거동을 묘사하고자 한다. 그리 고 면내전단하중이 작용하는 경우에 대해 전단지연해석을 수행할 수 있도록 모델링을 확장했다. 모재균열의 존재로 인한 단층의 강성변화는 실험으로 측정이 불가능하므 로 유한요소해석을 수행하여 비교하였다. 이 모델로부터 전단강성의 저하를 평가하 는 방법을 사용하였으며, 모재파손의 밀도 예측도 평균변형률 개념으로 전단효과를 고 려할 수 있도록 수정하였다. 그리고 초기파손후의 거동을 점진적으로 해석하기 위해 비선형 유한요소프그램을 작성하고, 상기의 모델을 도입하여 초기파손후의 거동을 보 다 정확히 묘사할 수 있는 방법을 제시하고 예로서 평시편에 대해 해석하고 실험치 및 타방법의 결과와 비교하였다.

Crustal Structure under the Taejon(TJN) Station by Receiver Function Methods

  • 유현제;이기화
    • 지구물리
    • /
    • 제4권1호
    • /
    • pp.35-46
    • /
    • 2001
  • 한반도 중부에 위치한 대전 지진관측소(TJN) 하부의 세부 지각구조를 밝혀내기 위하여 수신함수를 이용한 선형화된 역산(linearized inversion) 방법을 적용하였다. 본 방법의 비단일해(nonuniqueness)와 초기 모델 의존성의 문제를 해결하기 위해 근사 초기 속도 모델로부터 72개의 서로 다른 초기 모델을 구하여 역산을 수행한 후 결과모델들의 평균 속도 모델을 제시하는 방법을 사용하였다. 역산 결과 총 72개의 모델 중 뚜렷한 지각-맨틀 경계를 보이는 43개의 모델만이 조건에 만족하는 결과를 나타내었다. 모든 모델에서 속도 구조는 전체적으로 깊이에 따라 속도의 불연속면이나 급격한 증가없이 연속적인 변화를 하며, 모호면의 깊이는 30~32.5 km의 범위로 나타났다. 평균적인 하부 지각의 속도는 6.5 km/s, 상부 맨틀의 속도는 7.8 km/s로 뚜렷한 속도 변화를 보였다. 결과 모델 군은 중부지각(mid-crust)에서의 속도를 기준으로 약한 저속도층을 나타내는 군과 상대적으로 일정한 속도를 가지는 군으로 구분되었다. 단지 지진파형의 비교만으로 두 모델군 중 합당한 모델군의 선택은 불가능하였다. 따라서 수신 함수를 이용하여 연구 지역의 신뢰할 만한 지각 구조를 구하기 위해서는 그 지역에 대한 지질학적, 지구물리학적 추가정보와의 동반 해석이 요구된다.

  • PDF

뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측 (Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting)

  • 박영진;왕보현
    • 한국지능시스템학회논문지
    • /
    • 제14권5호
    • /
    • pp.533-538
    • /
    • 2004
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한극전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간, 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고, 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.