• Title/Summary/Keyword: 초경량 작동기

Search Result 4, Processing Time 0.017 seconds

Possibility of Electro-Active Papers (EAPap) Actuators (Electro-Active Papers(EAPap) 작동기의 가능성 연구)

  • 김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.495-498
    • /
    • 2002
  • Recently, the advent of electro-active papers (EAPap) actuators has been reported. In this paper, the possibility of the actuators is demonstrated. EAPap is a paper that produces large displacement with small force under an electrical excitation. EAPap is made with a chemically treated paper by constructing thin electrodes on both sides of the paper. When electrical voltage is applied on the electrodes the EAPap produces bending displacement. To improve the bending performance of EAPap, different paper fibers-softwood, hardwood, bacteria cellulose, cellophane, carbon mixture paper, electrolyte containing paper and Korean traditional paper, in conjunction with additive chemicals were tested. Two attempts were made to construct the electrodes: the direct use of aluminum foil and the gold sputtering technique. It was found that a cellophane paper exhibits a remarkable bending performance. When 2MV/m of excitation voltage was applied on the paper actuator, more than 3mm of tip displacement was observed out of the 30 mm long paper beam. This is quite low excitation voltage compared to that of other EAPs. The actuation principle of electro-active paper (EAPap) and possible applications are addressed.

  • PDF

Design and Construction of a Loom for Obtaining Ultra-Light Metal Structure (초경량 금속 구조재 직조장치의 설계 및 제작)

  • Kim, Pan-Su;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1235-1240
    • /
    • 2010
  • Wire-woven Bulk Kagome (WBK) is fabricated by assembling helically formed wires in six directions. To date, WBK samples have been assembled manually. For industrial application, the assembly process must be automated. Furthermore, if WBK is to be fabricated using flexible wires that cannot maintain their helical shape during fabrication, a specialized automatic machine, i.e., a loom needs to be developed. In this work, we designed and constructed a loom for fabricating WBKs using flexible wires. This loom is operated by one rotation of the upper plate, two translations of the insertion device, and insertion of wires. So-called "comb devices" are placed between multiple layers of Kagome nets to prevent the wires that are already in place from getting entangled with those that are being inserted. This loom can be also used to fabricate semi-WBKs composed of helically formed wires and rigid straight wires.

Numerical Investigation of Temperature Uniformity and Estimation Accuracy for MEMS-based Black Body System (MEMS 기반 흑체 시스템의 온도 균일도 및 추정 정확도의 수치 해석적 검토)

  • Chae, Bong-Geon;Kim, Tae-Gyu;Lee, Jong-Kwang;Kang, Suk-joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.455-462
    • /
    • 2016
  • Output Characteristics of the spaceborn image sensor such as infrared(IR) sensor are varied according to time elapses and sensor repetition on/off operation. As a result, the quality of IR sensor image is decreased. Therefore, spaceborne image sensor require a periodic calibration using a black body system by correcting a non-uniformity of the sensor. In this paper, we proposed a MEMS-based black body system that can implement the high temperature uniformity at various standard temperatures ranging from low to high temperature and easily estimate the representative surface temperature. In addition, it has advantages lightweight, low-power and high accuracy. The feasibility of the proposed MEMS-based black body system was verified through the thermal analysis.

Cortex M3 Based Lightweight Security Protocol for Authentication and Encrypt Communication between Smart Meters and Data Concentrate Unit (스마트미터와 데이터 집중 장치간 인증 및 암호화 통신을 위한 Cortex M3 기반 경량 보안 프로토콜)

  • Shin, Dong-Myung;Ko, Sang-Jun
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • The existing smart grid device authentication system is concentrated on DCU, meter reading FEP and MDMS, and the authentication system for smart meters is not established. Although some cryptographic chips have been developed at present, it is difficult to complete the PKI authentication scheme because it is at the low level of simple encryption. Unlike existing power grids, smart grids are based on open two-way communication, increasing the risk of accidents as information security vulnerabilities increase. However, PKI is difficult to apply to smart meters, and there is a possibility of accidents such as system shutdown by sending manipulated packets and sending false information to the operating system. Issuing an existing PKI certificate to smart meters with high hardware constraints makes authentication and certificate renewal difficult, so an ultra-lightweight password authentication protocol that can operate even on the poor performance of smart meters (such as non-IP networks, processors, memory, and storage space) was designed and implemented. As a result of the experiment, lightweight cryptographic authentication protocol was able to be executed quickly in the Cortex-M3 environment, and it is expected that it will help to prepare a more secure authentication system in the smart grid industry.