• Title/Summary/Keyword: 체적산란강도

Search Result 25, Processing Time 0.026 seconds

Variability of Vertical Distribution of Volume Scattering Observed in the Shallow Water (천해 체적 산란강도의 수직분포 변동성)

  • 박경주;김은혜;강돈혁;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • Measurements of backscattered intensity were made over a shallow water using 300 ㎑and 1200 ㎑ bottom mounted ADCP (Acoustic Doppler Current Profiler) to determine the temporal variability of vertical distribution of high-frequency volume scattering strength (Sv). The variability of Sv in relatively deep water column(85 m and 113 m was due to the daily vertical migration, probably of larger zooplankton. However it was not found with 1200㎑ data at shallow water column. From the empirical orthogonal function (EOF) analysis using 1200㎑ data, the vertical distribution of the first mode eigenvectors of Sv is characterized by the presence of the maximum values near the bottom of the water.

Directional Characteristics on Acoustic Volume Scattering by Cylindrical Line Array (실린더 배열을 이용한 체적산란강도의 방향 특성)

  • Kim Eunhye;Na Jungyul;Kang Donhyung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.345-348
    • /
    • 2001
  • 해수 체적에 의한 산란 특성을 이해하기 위해 방향 특성(directional response)에 대한 연구를 실시하였다. 이를 위해 공기로 채워진 PVC(polyvinyl- chloride) 재질의 실린더를 등 간격으로 설치하여 일정한 체적을 기하학적으로 배열하였다. 동일한 체적에 대한 산란강도의 방향 특성 모의로부터 수중의 표적 탐지 및 수산 자원량 조사의 중요 변수인 체적 산란강도의 음원 방향에 대한 고찰이 필요함을 알 수 있다.

  • PDF

Variability of Volume Scattering Strength Observed in the Shallow Water (천해 체적 산란강도의 변동성)

  • Park Kyoungju;Kim Eunhye;Kang Donhyug;Na Jungyul
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.433-438
    • /
    • 2002
  • 연안역의 천해 해저면에 설치된 ADCP(Acoustic Doppler Current Profiler, 300kHz, 1200kHz)를 이용, 천해에서 체적 산란강도(volume scattering strength) 수직분포의 시간적인 변동 특성을 알아보았다. 수심 85m와 113m에서 ADCP로 측정한 산란강도의 일주기 변동성은 동물플랑크톤(zooplankton)으로 추측되는 산란체의 일주기 수직 이동(daily vertical migration)의 원인으로 추정되었다. 그러나 수심 20m의 천해에서 관측된 산란강도의 시변동성은 경험적 직교 함수(Empirical Orthogonal Function, EOF) 분석 결과 해저면 부근의 변화가 천해 체적 산란의 변동성에 큰 영향을 주는 것으로 나타났다.

  • PDF

High-frequency bottom backscattering strength measurements in shallow water (천해에서의 고주파 해저면 후방산란강도 측정)

  • Choi Jee Woong;Na Jungyul;Suk Dongwoo;Oh Suntaek;Park Joungsoo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.198-201
    • /
    • 1999
  • 고주파를 이용한 해저면 후방산란강도를 진해 해군사관학교 내의 실험해역에서 측정하였다. 측정된 후방산란강도를 수평입사각의 함수로 나타낸 후 Jackson 모델과 비교, 분석하였다. 해저면 구성성분을 파악하기 위해 다이버에 의해 코어링이 채취되었으며, 해저면 환경파라메터들은 Hamilton 모델에 의해 산출되었다. 분석 결과, 해저면이 거칠 경우 고주파 해저면 후방산란강도는 퇴적층 내부의 체적산란강도 보다 해저면 거칠기에 의한 산란의 영향을 많이 받는 것을 알 수 있었다.

  • PDF

Characteristics of Backscattering of Harmful Algae Using Underwater Ultrasound (수중 초음파를 이용한 적조 플랑크톤의 후방산란 특성)

  • Kim Eunhye;Bok Tae-hoon;Na Jungyul;Paeng Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.447-453
    • /
    • 2005
  • Laboratory measurements were performed in a uni-algae medium Cochlodinium polykrikoides (Phytoplankton, dinoflagellates) using an Underwater Ultrasound $(5\~15\;MHz)$ to study Characteristics of Acoustic Backscattering of Harmful algae. In an effort to detect the harmful algal scatterers with population density of less than 300 cells/ml that corresponds to the precaution stage of red tide, backscattered signals from various scatterer-density samples were obtained and analyzed. Correlations between volume backscattering strength (Sv) and population density (cells/ml) of scatterers in the medium have been investigated. Comparison of Volume Backscattering Strengths calculated with the fluid-sphere model [1] and the measured values showed an agreement.

Distribution of Zooplankton by ADCP's Echo Intensity in the Coastal Water used Yellow Loess (다층 도플러 유속계(ADCP)를 이용한 황토 살포 해역의 플랑크톤 평가)

  • Park, Ju-Sam;Choo, Hyo-Sang;Moon, Sung-Ryong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.141-151
    • /
    • 2010
  • Harmful algal blooms (HABs), commonly known as red tides, are aquatic phenomena caused by the rapid growth and accumulation of certain microalgae, which can lead to marked discoloration of surface waters, and severe impacts on public health, commerce, and the environment. In South Korea, the red tides have been a serious and recurrent problem, especially along the south coast. Plenty of yellow loess was used to control an outbreak of the red tides for 15 years from 1996 until now. Yellow loess was almost sprayed in the vicinity of a large fish farming industry. In this research, the distribution characteristics and density distribution of zooplankton were investigated in autumn (Oct. 2008) and spring (Apr. 2009) using volume backscattering strength (SV) calculated by the zooplankton collected with north pacific standard (NORPAC) net and the echo intensity measured with ADCP at stations on the study area in the spraying ocean of yellow loess (SOYL), and the non-spraying ocean of yellow ocean (NOYL) by the red tide generating every year. The species number and the individuals per unit volume of the zooplankton collected in NOYL was high and it which was collected in SOYL was low. As a result of comparing the volume backscattering strength ($SV_c$) calculated by species and length of the zooplankton collected with NORPAC net with the volume backscattering strength ($SV_m$) calculated by the echo intensity measured with ADCP at stations on the study area, although $SV_c$ and $SV_m$ of NOYL were generally in agreement, $SV_m$ of SOYL was higher than $SV_c$ 4.3dB, i.e. ADCP is greatly influenced by suspended solid in SOYL. The horizontal distribution map of $SV_m$ at the study area in autumn (Oct. 2008) and spring (Apr. 2009) was drawn. $SV_m$ of SOYL is higher than NOYL and autumn is higher than spring. $SV_m$ can suppress the overestimate or underestimate of $SV_c$.

Acoustic Scattering Layers in the East China Sea ( 2 ) -Vertical Distribution of Volume Scattering Strength- (동지나해의 초음파 산란층에 관한 연구 ( 2 ) -체적산란강도의 연직분포-)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.20-25
    • /
    • 1990
  • During the summer of 1989, the authors carried out the hydroacoustic surverys to investigate the vertical distribution of volume backscattering strength in the East China Sea and simultaneously the biological sampling of the scattering layers by bottom trawling. The echoes from the scattering layers was continuously measured by using a 50 kHz echo sounder during the day and night. A data acquisition system was used to record digitally the envelope of the echoes and the echo integration technique was used to determine the scattering strength proportional to biomass density in each layer. The vertical profiles of volume backscattering strength also were compared with the one of water temperature. The results obtained can be summarized as follows: 1. The vertical profiles of mean volume backscattering strength at day and night suggested that during the night the biggest fish concentrations appeared in the mixed layer above the thermocline and during the day near the bottom. In another profiles where the thermocline was not well developed, peaks in scattering appeared at midwater depths and near the bottom. 2. The maximum values of mean volume backscattering strengths varied from -49.3 dB to -48.0 dB on different regions and at different times of the day and night. 3. Trawl data indicated that the organisms consisting of the scattering layer near the bottom were squid and various species of demersal fishes.

  • PDF

Measurements of Monostatic Bottom Backscattering Strengths in Shallow Water of the Yellow Sea (서해 천해환경에서 단상태 해저면 후방산란강도 측정)

  • Son, Wuju;Son, Su-Uk;Choi, Jee Woong;Cho, Sungho;Jung, Seom-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.444-454
    • /
    • 2015
  • Measurements of bottom backscattering strengths in a frequency range of 6-14 kHz were made on the shallow water off the southern Gyeonggi Bay in Yellow Sea in May 2013, as part of the KIOST-HYU joint acoustics experiment. Geological surveys for the experimental area were performed using multi-beam echo sounder, sparker system, and grab sampling to investigate the bottom topography, sub-bottom profile and composition of surficial sediment, respectively. In this paper, the backscattering strengths as a function of grazing angle (in range of $28^{\circ}{\sim}69^{\circ}$) were estimated and compared to the predictions obtained by Lambert's law and APL-UW scattering model. Finally, the effects of geoacoustic parameters corresponding to the experimental area on the backscattering strengths are discussed.

Prediction of Backscattering Strength and Volume (동물플랑크톤에 의한 후방산란강도 및 체적복반사음의 예측)

  • 나정열
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.127-130
    • /
    • 1992
  • 한국 근해에서 능동소나 (active sonar) 사용시 사용되는 environmental parameters 가운데 하나인 volume reverberation(REv)을 산출하기 위하여 플랑크톤에 의한 후방산란 강도(backscattering strength)에 대한 연구를 하였다. 이를 위하여 수산진흥원 자료(80-89년)중 부유생물조사표에서 후방산란 강도가 다른 종에 비하여 큰 copepoda의 개체수를 평균한 후, 수심별 개체수를 계산하여 수심별, 주파수별(10, 50kHz), 계절별(2월, 8월) 후방산란 강도와 multipath eigenray model을 이용하여 REv를 산출하였다. 예로 사용한 동남해역(zone:S3), 서해중부해역(zone:W3)에서 주파수별 REv는 일반적인 형태인 포기에는 고주파가 높고, 1.5초 이후에는 저주파가 높게 나타났다. 그러나 여름이 겨울보다 플랑크톤 개체수가 많아 후방산란 강도가 크지만(2-5dB), REv는 겨울이 더 크게 나타났다. 이러한 이유는 SVP profile에 의한 pressure 계산결과, 여름에는 ray가 down-ward이고 겨울에는 duct를 형성하여 ray가 거의 direct로 진행하므로 transmission loss가 여름이 크기 때문이다. 또한 ray tracing결과 여름철에는 ray crossing이 많아 겨울에 비하여 fluctuation이 심하게 나타나는 현상을 보이고 있다. 두 지역 이외에도 한국근해의 정확한 REv을 예측하기 위해서는 플랑크톤의 정확한 측정과, 이론적인 수치와 비교할 수 있는 실측치를 얻는 것이 필요하다고 볼 수 있다.

  • PDF

Modeling of Scattered Signal from Ship Wake and Experimental Verification (항적 산란신호의 모델링과 실험적 검증)

  • Ji, Yoon-Hee;Lee, Jae-Hoon;Kim, Jea-Soo;Kim, Jung-Hae;Kim, Woo-Shik;Choi, Sang-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • A moving surface vessel generates a ship wake which contains a cloud of micro-bubbles with radii ranging between $8{\sim}200{\mu}m$. Such micro-bubbles can be detected by active sonar system for more than ten minutes depending on the size and speed of the surface vessel. In this paper, a reverberation model for the ship wake is presented. The developed model consists of the acoustic scattering model due to the distribution of the micro-bubbles and the kinematic model for the moving active sonar. The acoustic scattering model is based on the volume integration, where the volume scattering strengths are obtained from the spatial distribution of micro-bubbles. Since the directivity and look-direction of active sonar are important factors for moving active sonar, the kinematic model utilizes the Euler transformation to obtain the relative motion between the global and local coordinates. In order to verify the developed model, a series of sea experiment was executed in September 2007 to obtain the spatial-temporal distribution of a bubble cloud, and analyzed to be compared with the simulation results.