• Title/Summary/Keyword: 체결 해석

Search Result 325, Processing Time 0.025 seconds

The Structural Analysis of Wedge Joint in Composite Motor Case (복합재 연소관의 쐐기형 체결부 구조 해석)

  • 황태경;도영대;김유준
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.64-73
    • /
    • 2000
  • The joint parts was composed of inner AL(aluminum) ring, FRP wedge and motor case which was manufactured by filament wound method. Where the motor case consists of helical and hoop layer. The finite element analysis was performed for the design variable of joint parts to improve the performance of motor case. Where the adhesive layer was modeled to elasto-perfect plastic material and the contact condition of AL ring and wedge was modeled by using the contact surface element of ABAQUS. And the sliding distance of AL ring and the hoop strain of composite case were compared to hydro-static test results to verify the accuracy of analysis results. When wedge and AL ring was perfect bonding, though the hoop strain of joint part was reduced, the maximum shear stress was occurred at the adhesive layer. Thus the adhesive layer had failed due to the high shear stress before the failure was occurred at the case. And as another design method, when wedge and AL ring was contact condition, the shear stress on adhesive layer was decreased. But the hoop stress of joint part increased due to the sliding behavior of AL ring. Finally, the fail was occurred at the composite case of joint part. The improved joint method reinforced by hoop layer to the joint parts under contact condition for wedge and Al. ring reduced the joint part's hoop strain by constraint the sliding behavior of AL ring.

  • PDF

Dynamic Property Identification of Structural Systems with Hinge Joint Using Equivalent Stiffness (등가강성모델을 활용한 힌지체결부 동특성 동정)

  • Won, Junho;Lim, Che Kyu;Lee, Doo-Ho;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1635-1642
    • /
    • 2012
  • The identification of the dynamic properties of structural joints is important for predicting the dynamic behavior of assembled systems. However, the identification of the properties using analytical or experimental approaches is extremely difficult or even impossible. Several studies have proposed hybrid or synthesis methods that simultaneously used analytical and experimental approaches to identify the dynamic properties of a joint. However, among the many types of joints, only the bolt joint was treated as a practical example in these studies. In this study, for a simple assembly system comprising two plates and one hinge joint, a simple methodology involving the use of the static-based subpart analysis method to identify the dynamic properties is proposed. Finally, the proposed method is applied to a glove box in a passenger vehicle that includes hinge joints.

An Experimental Study to Evaluate the Stiffness of Fastening Systems - Translational Stiffness along the Vertical Axis of Rail, Rotational Stiffness along the Strong Axis of Rail - (체결장치의 강성 평가를 위한 실험적 연구 - 레일 연직방향 병진강성, 레일 강축에 대한 회전강성 -)

  • Kim, Jung-Hun;Han, Sang-Yun;Lim, Nam-Hyoung;Kang, Young-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.71-78
    • /
    • 2008
  • In the case of the railway bridges, uplift forces were occurred at the edge of the segments when vehicular loads were applied. These forces caused the compressive and tensile forces in the fastening system. In the past, a structural analysis has been performed to investigate the safety of fastening system which was modeled with one directional spring elements based on the compressive test of fastening system. In this case, the stiffness of the spring element was obtained from experimental study which was conducted by compressive load. Therefore, to perform rational and exact structural analysis, the translational stiffness of the fastening system obtained from the experimental study applied the tensile load and the rotational stiffness should be considered because it was occurred the tensile force as well as the compressive force in fastening system. In this study, an elastic and inelastic experimental study was performed for six specimens. The translational stiffness along the vertical axis of rail and the rotational stiffness along the strong axis of rail were investigated, also structural behavior of the fastening system was analyzed.

Strength of Glass/Epoxy Fabric Joints under the Pin-Loading (핀하중을 받는 유리/에폭시 평직 적층판의 체결부 강도)

  • 박노희;권진희;김종훈;변준형;양승운
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • The strength of glass/epoxy fabric joints under pin-loading is estimated based on the characteristics length method and experiment. To investigate the effect of finite element idealization for the contact between pin and laminate, three modeling cases are analyzed; assuming the cosine load distribution around the contact area, constraining the radial displacement at the hole boundary, and using the contact element. To study the effect of failure criteria, Tsai-Wu and Yamada-Sun methods are applied on the characteristic curve. The results of the nonlinear analysis using the contact element showed good agrements with experimental data in both laminates made of uni-directional prepreg tapes and fabrics. In terms of failure criteria, Tsai-Wu method showed better agreement with experimental results than the one by Yamada-Sun laminate.

Finite Element Analysis of Mechanical Behavior of Bolt Tightened in Plastic Region (소성역 체결 볼트의 기계적 거동 유한요소해석)

  • Cho, Sung-San;Shin, Chun-Se
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.37-42
    • /
    • 2010
  • Plastic region tightening is widely used in critical bolted joints in internal combustion engines in order to reduce the engine weight by maximizing the use of load-carrying capacity of bolt. Mechanical behavior of bolt tightened in plastic region under external axial tensile load is investigated for various friction conditions using three dimensional finite element analysis. The behavior of bolt tightened in elastic region as well as that in tensile test are investigated for comparison. Tightening process is simulated by rotating the bolt in order to examine the friction effect realistically. It is revealed that the bolt tightened in plastic region can carry more external load until the joint is opened, and yields at lower bolt load than the bolt tightened in elastic region. The friction coefficient has effect on the yield load, but not on the load-carrying capacity. Moreover, the scatter in the bolt preload due to friction begins with plastic deformation of bolt in the angle tightening control, whereas it begins with the onset of tightening in the torque tightening control. The observations are interpreted with the residual torsional stress in the bolt generated during the tightening.

Prediction of Joining Torque for Bit Depth of Subminiature Bolt (초소형 볼트의 비트 깊이에 따른 체결 토크 예측)

  • Lee, Hyun-Kyu;Park, Keun;Ra, Seung-Woo;Kim, Jong-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.917-923
    • /
    • 2014
  • Subminiature joining bolts are required for the electronic parts of gadgets such as mobile phones and watch phones. During the miniaturization of bolt heads, it is difficult to obtain sufficient joining force owing to the risk of shear fracture of the bolt head or severe plastic deformation on the bit region. In this study, the maximum joining torque for the bit depth was predicted using finite element analysis. A shear fracture test was conducted on a wire used in bolt forming. The results of this test were subjected to finite element analysis and a fracture criterion was obtained by comparing the experimental and analysis results. The shear fracture of the bolt head during joining was predicted based on the obtained criterion. Furthermore, the maximum joining torque was predicted for various bit depths. Fracture on the boundary between the bolt head and thread was found to occur in lower joining torque as bit depth increases.

Flexural Behavior of Steel Composite Beam with Built-up Cross-section by Bolt Connection (볼트로 체결된 강재 조립 합성보의 휨 거동)

  • Kim, Sung-Bo;Han, Man-Yop;Kim, Moon-Young;Ji, Tea-Sug;Jung, Kyoung-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.207-216
    • /
    • 2007
  • The flexural behavior of steel composite beam with built-up cross-section by bolt connection is presented in this paper. The composite effect due to bolt-connetion and friction between steel plate are considered to investigate the flexural behavior of steel composite beam. The displacement, bending stresses and shear stresses according to composite rate are calculated by F.E. analysis and these results are compared to the analytical values of non interaction beam and full interaction beam. As a result of analysis, the behavior of composite beam is more dependant on the composite rate than the friction of the steel plate. When the composite rate reaches $50{\sim}60%$, the behavior of composite beam is similar to that of fully composite beam.

Evaluation of Behavior of Composite Single Lap Joints with Different Finite Element Models (유한요소 모델에 따른 복합재 단일겹치기 접착 조인트부의 거동 평가)

  • Kim, Jung-Seok;Yoon, Hyuk-Jin;Hwang, Jae-Yeon;Yoon, Ji-You;Lee, Seung-Hun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.546-551
    • /
    • 2010
  • In this paper, the strain distribution of the bond layer has been compared with the experimental data and analyzed according to the different mesh refinements and element types. The mesh density was changed along the longitudinal direction of adherend, the longitudinal direction of overlapped region, the vertical direction of adherend, the vertical direction of adhesive and the width direction of the joint. In addition, the effect of the different types of element was evaluated using soild, shell and plane strain element. The geometric nonlinear analysis was performed to consider the large deformation of the joint. From the numerical result, at least 2 elements were needed to achieve a reliable result as the solid element used. In case of shell element, the peel strain at x/c=1 showed 22.8% error compared with the experiment but the shear strain showed a good agreement with the experiment within 1.67% error.

Progressive Failure Analysis of Adhesive Joints of Filament-Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 접착 체결부에 대한 점진적 파손 해석)

  • Kim, Junhwan;Shin, Kwangbok;Hwang, Taekyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1265-1272
    • /
    • 2014
  • This study performed the progressive failure analysis of adhesive joints of a composite pressure vessel with a separated dome by using a cohesive zone model. In order to determine the input parameters of a cohesive element for numerical analysis, the interlaminar fracture toughness values in modes I and II and in the mixed mode for the adhesive joints of the composite pressure vessel were obtained by a material test. All specimens were manufactured by the filament winding method. A mechanical test was performed on adhesively bonded double-lap joints to determine the shear strength of the adhesive joints and verify the reliability of the cohesive zone model for progressive failure analysis. The test results showed that the shear strength of the adhesive joints was 32MPa; the experiment and analysis results had an error of about 4.4%, indicating their relatively good agreement. The progressive failure analysis of a composite pressure vessel with an adhesively bonded dome performed using the cohesive zone model showed that only 5.8% of the total adhesive length was debonded and this debonded length did not affect the structural integrity of the vessel.

Optimal Vertical Stiffness of Fastener of Concrete Track in High-Speed Railway (고속철도 콘크리트궤도 체결구 최적 수직강성)

  • Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2015
  • In this study, to minimize both the costs associated with track maintenance and the energy consumption for train operation, a numerical method that evaluates the optimal vertical stiffness of a fastener for concrete track is presented. A progress model of the track damage is established in order to calculate the concrete track maintenance cost according to the fastener stiffness. Also, the quantitative relationship between the progress of the track damage and the maintenance of the concrete track is derived. The wheel load is more exactly evaluated by using the advanced vehicle-track interaction model, which can precisely consider the behaviors of the track components. An optimal range for the stiffness of the fastener, a range that is applicable to the design of concrete track for domestic high speed lines, is proposed.