• Title/Summary/Keyword: 체감 진동의 정량화

Search Result 2, Processing Time 0.019 seconds

An Experimental Study on the Stick-Slip Vibration of the Clutch during Starting of a Vehicle (차량 출발 시 클러치에서의 고착-미끄럼 진동현상에 관한 실험적)

  • Kim, Sang-Soo;Jang, Han-Kee;Cho, Yeon;Park, Young-Won;Chai, Jang-Bom
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.461-470
    • /
    • 2001
  • A friction-type clutch system sometimes generates spick-slip vibration during engagement, which disturbs smooth start of a car and makes a passenger uncomfortable. In this study, the spick-slip vibration in four types of friction couples was investigated at two different engagement conditions respectively of which the amount of slip time and clutch travel was varied. Results are found as follows. First, the vibration increased at the condition of small engine torque and large torque fluctuations due to higher harmonics of engine speed. Second, the friction couple without a pre-damper has advantages of reducing the vibration. This study also suggested an evaluation method of vehicle vibration in the view point of human perception by using the frequency weighting of ISO2631-1.

  • PDF

Typical Seismic Intensity Calculation for Each Region Using Site Response Analysis (부지응답해석을 이용한 지역별 대표 진도 산출 연구)

  • Ahn, Jae-Kwang;Son, Su-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2020
  • Vibration propagated from seismic sources has damping according to distance and amplification and reduction characteristic in different regions according to topography and geological structure. The vibration propagated from the seismic source to the bedrock is largely affected by the damping according to the separation distance, which can be simply estimated through the damping equation. However, it is important to grasp geological information by location because vibration estimation transmitted to the surface are affected by the natural period of the soil located above the bedrock. Geotechnical investigation data are needed to estimate the seismic intensity based on geological information. If there is no Vs profile, the standard penetration tests are mainly used to determine the soil parameters. The Integrated DB Center of National Geotechnical Information manages the geotechnical survey data performed on the domestic ground, and there is the standard penetration test information of 400,000 holes. In this study, the possibility of quantitation the amplification coefficient for each region was examined to calculated the physical interactive seismic intensity based on geotechnical information. At this time, the shear wave column diagram was generated from the SPT-N value and ground response analysis was performed in the target area. The site coefficients for each zone and the seismic intensity distribution for the seismic motion present a significant difference according to the analysis method and the regional setting.