• Title/Summary/Keyword: 청크기반 OLAP 큐브

Search Result 2, Processing Time 0.018 seconds

A Bitmap Index for Chunk-Based MOLAP Cubes (청크 기반 MOLAP 큐브를 위한 비트맵 인덱스)

  • Lim, Yoon-Sun;Kim, Myung
    • Journal of KIISE:Databases
    • /
    • v.30 no.3
    • /
    • pp.225-236
    • /
    • 2003
  • MOLAP systems store data in a multidimensional away called a 'cube' and access them using way indexes. When a cube is placed into disk, it can be Partitioned into a set of chunks of the same side length. Such a cube storage scheme is called the chunk-based MOLAP cube storage scheme. It gives data clustering effect so that all the dimensions are guaranteed to get a fair chance in terms of the query processing speed. In order to achieve high space utilization, sparse chunks are further compressed. Due to data compression, the relative position of chunks cannot be obtained in constant time without using indexes. In this paper, we propose a bitmap index for chunk-based MOLAP cubes. The index can be constructed along with the corresponding cube generation. The relative position of chunks is retained in the index so that chunk retrieval can be done in constant time. We placed in an index block as many chunks as possible so that the number of index searches is minimized for OLAP operations such as range queries. We showed the proposed index is efficient by comparing it with multidimensional indexes such as UB-tree and grid file in terms of time and space.

A Z-Index based MOLAP Cube Storage Scheme (Z-인덱스 기반 MOLAP 큐브 저장 구조)

  • Kim, Myung;Lim, Yoon-Sun
    • Journal of KIISE:Databases
    • /
    • v.29 no.4
    • /
    • pp.262-273
    • /
    • 2002
  • MOLAP is a technology that accelerates multidimensional data analysis by storing data in a multidimensional array and accessing them using their position information. Depending on a mapping scheme of a multidimensional array onto disk, the sliced of MOLAP operations such as slice and dice varies significantly. [1] proposed a MOLAP cube storage scheme that divides a cube into small chunks with equal side length, compresses sparse chunks, and stores the chunks in row-major order of their chunk indexes. This type of cube storage scheme gives a fair chance to all dimensions of the input data. Here, we developed a variant of their cube storage scheme by placing chunks in a different order. Our scheme accelerates slice and dice operations by aligning chunks to physical disk block boundaries and clustering neighboring chunks. Z-indexing is used for chunk clustering. The efficiency of the proposed scheme is evaluated through experiments. We showed that the proposed scheme is efficient for 3~5 dimensional cubes that are frequently used to analyze business data.