• Title/Summary/Keyword: 청정연료

Search Result 360, Processing Time 0.023 seconds

A Carbon Cycle Model Based Method for Carbon Neutrality Assessment (탄소순환 모델기반 탄소중립 평가방법)

  • Choi, Soo Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.433-438
    • /
    • 2022
  • A carbon cycle model based method is proposed in order to evaluate the effectiveness of various policies and projects to achieve carbon neutrality. The proposed model was validated by properly reproducing the increase in the concentration of carbon dioxide in the atmosphere and the rise of the global average temperature from the data of anthropogenic carbon emissions and deforestation since the industrial revolution. As a case study, a carbon cycle impact assessment was performed for deforestation, reforestation, and afforestation. It was verified that the increase of carbon dioxide in the atmosphere is attributed not only to fossil fuel usage, but also to deforestation, and that even if deforestation is immediately followed by reforestation, it takes very long to return to the initial concentration. The proposed method is expected to be eventually applicable to simulation of potential climate control in the future, contributing to safety verification of various climate engineering techniques.

Recovery of Valuable Minerals from Sea Water by Membrane Separation and Adsorption Process: A Review (막 분리와 흡착 과정을 통한 해수로부터의 주요 광물 회수: 리뷰)

  • Jeon, Sungsu;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • Ever increasing global energy demand gives rise to uncontrollable environmental pollution. Demand on fossil fuel and consequent carbon emission leads to global warming and climate change. Nuclear energy is an alternative source to generate clean energy but mining of nuclear fuel is associated with harmful chemicals. Mining of valuable minerals from sea water by membrane separation process is a cost effective along with environmental friendly process. Separation and adsorption based mining of valuable minerals from sea water are another efficient process. Recovery of actinides from rare earth elements are very challenging and expensive process. Pressure driven membrane separation process is economically more viable along with environmental process. In this review membrane separation process are based on polyether sulfone, polyamide, polyimide, polyamidoxine and hybrid membranes. In case of adsorption process, mainly amidoxime kind of adsorbent are discussed.

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS (TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구)

  • So, Sunghyun;Park, Daegeun;Park, Jiyeon;Song, Aran;Jeong, Nakwon;Yoo, Miyeon;Hwang, Jungho;Lee, Changyeop
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.

Conceptual Design and Hydrodynamic Properties of a Moving Bed Reactor for Intrinsic $CO_2$ Separation Hydrogen Production Process ($CO_2$ 원천분리 수소 제조 공정을 위한 이동층 반응기의 개념 설계 및 수력학적 특성)

  • Park, Dong-Kyoo;Cho, Won-Chul;Seo, Myung-Won;Go, Kang-Seok;Kim, Sang-Done;Kang, Kyoung-Soo;Park, Chu-Sik
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • The intrinsic $CO_2$ separation and hydrogen production system is a novel concept using oxidation and reduction reactions of oxygen carrier for both $CO_2$ capture and high purity hydrogen production. The process consists of a fuel reactor (FR), a steam reactor (SR) and an air reactor (AR). The natural gas ($CH_4$) is oxidized to $CO_2$ and steam by the oxygen carrier in FR, whereas the steam is reduced to hydrogen by oxidation of the reduced oxygen carrier in SR. The oxygen carrier is fully oxidized by air in AR. In the present study, the chemical looping moving bed reactor having 200 L/h hydrogen production capacity is designed and the hydrodynamic properties were determined. Compared with other reactors, two moving bed reactors (FR, SR) were used to obtain high conversion and selectivity of the oxygen carrier. The desirable solid circulation rates are calculated to be in the range of $20{\sim}100kg/m^2s$ from the conceptual design. The solid circulation rate can be controlled by aeration in a loop-seal. To maintain the gas velocity in the moving beds (FR, SR) at the minimum fluidization velocity is found to be suitable for the stable operation. The solid holdup in moving beds decrease with increasing gas velocity and solid circulation rate.

Preparation and Characterization of $Cu/Ce_xZr_{1-x}O_2$ Catalysts for Preferential Oxidation of Carbon Monoxide (일산화탄소의 선택적 산화반응을 위한 $Cu/Ce_xZr_{1-x}O_2$ 촉매의 합성과 특성분석)

  • Lee, So-Yeon;Lee, Suk-Hee;Cheon, Jae-Kee;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.54-63
    • /
    • 2007
  • Even traces of CO in the hydrogen-rich feed gas to proton exchange membrane fuel cells (PEMFC) poison the platinum anode electrode and dramatically decrease the power output. In this work, a variety of catalytic materials consisting of $Cu/Ce_xZr_{1-x}O_2$, (x = 0.0-1.0) were synthesised, characterized and tested for CO oxidation and preferential oxidation of CO (PROX). These catalysts prepared by hydrothermal and deposition-precipitation methods. The catalysts were characterized by XRD, XRF, SEM, BET, $N_2O$ titration and oxygen storage capacity (OSC) measurement. The effects of composition of the support and degree of excess oxygen were investigated fur activity and $CO_2$ selectivity with different temperatures. The composition of the support markedly influenced the PROX activity. Among the various $Cu/Ce_xZr_{1-x}O_2$ catalysts having different composition, $Cu/Ce_{0.9}Zr_{0.1}O_2$ and $Cu/Ce_{0.7}Zr_{0.3}O_2$ showed the highest activities (>99%) and selectivities (ca.50%) in the temperature range of $150{\sim}160^{\circ}C$. It was found that by using of $Ce_xZr_{1-x}O_2$ mixed oxide support which possesses a high oxygen storage capacity, oxidation-reduction activity of Cu-based catalyst was improved, which resulted in the increase of catalytic activity and selectivity of CO oxidation in excess $H_2$ environments.

  • PDF

Optimization of DME Reforming using Steam Plasma (수증기 플라즈마를 이용한 DME 개질의 최적화 방안 연구)

  • Jung, Kyeongsoo;Chae, U-Ri;Chae, Ho Keun;Chung, Myeong-Sug;Lee, Joo-Yeoun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In today's global energy market, the importance of green energy is emerging. Hydrogen energy is the future clean energy source and one of the pollution-free energy sources. In particular, the fuel cell method using hydrogen enhances the flexibility of renewable energy and enables energy storage and conversion for a long time. Therefore, it is considered to be a solution that can solve environmental problems caused by the use of fossil resources and energy problems caused by exhaustion of resources simultaneously. The purpose of this study is to efficiently produce hydrogen using plasma, and to study the optimization of DME reforming by checking the reforming reaction and yield according to temperature. The research method uses a 2.45 GHz electromagnetic plasma torch to produce hydrogen by reforming DME(Di Methyl Ether), a clean fuel. Gasification analysis was performed under low temperature conditions ($T3=1100^{\circ}C$), low temperature peroxygen conditions ($T3=1100^{\circ}C$), and high temperature conditions ($T3=1376^{\circ}C$). The low temperature gasification analysis showed that methane is generated due to unstable reforming reaction near $1100^{\circ}C$. The low temperature peroxygen gasification analysis showed less hydrogen but more carbon dioxide than the low temperature gasification analysis. Gasification analysis at high temperature indicated that methane was generated from about $1150^{\circ}C$, but it was not generated above $1200^{\circ}C$. In conclusion, the higher the temperature during the reforming reaction, the higher the proportion of hydrogen, but the higher the proportion of CO. However, it was confirmed that the problem of heat loss and reforming occurred due to the structural problem of the gasifier. In future developments, there is a need to reduce incomplete combustion by improving gasifiers to obtain high yields of hydrogen and to reduce the generation of gases such as carbon monoxide and methane. The optimization plan to produce hydrogen by steam plasma reforming of DME proposed in this study is expected to make a meaningful contribution to producing eco-friendly and renewable energy in the future.

An Analytical Study of Geologic Characteristics and Production- Related Problems of Beep Natural Gas Resources (심부 천연가스의 지질학절 부존 환경 특성과 생산관련 현안 문제점 분석 연구)

  • Chang Seungyong
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.28-46
    • /
    • 2001
  • Natural gas is a mixture of hydrocarbon gases and impurities such as nitrogen, hydrogen sulfide, and carbon dioxide and a clean energy producing no pollution materials for combustion. Currently, the demand of the natural gas is rapidly increasing due to worldwide environmental problems. According to Hubbert's study in the past, the natural gas was predicted as rapidly depleted resources, and then the results led to high gas price and limitation of usage during 1980s. Afterward, the study of natural gas resources based on geology identified the additional natural gas resources that were not considered in Hubbert's study. They are unconventional gas, additional resources in the existed reservoirs, and natural gas in deep subsurface areas. Such additional resouces made the future of natural gas bright and pormised low and stable gas price in the future. Deep natural gas is defined as the gas existing at or below 15,000ft$(4,752{\cal}m)$ in depth from the surface. According to the study from the U.S. Geological Survey(USGS) in 1995, 1,412 TCF of technically recoverable natural gas was remained to be discovered or developed in the onshore of United States. A significant part of that resource base, 114 TCF, exists at deep sedimentary basins, and it shows wide distribution with various geological environments. In 1995, the deep gas contributed to $6.7\% of total supply amount of natural gas in the United States and is expected to be $18.7\% by 201.5. However, the development of the deep gas is a high risky business due to expensive investment and high portion of dry holes, although it is developed. Thus, for developing the deep gas economically, it is necessary to overcome many technical challenges. In this paper, for increasing success rate of the deep gas, 1) geologic and compositional characteristics, and production cost have been analyzed according to depth, 2) technical problems related to deep gas production have been summarized, and 3) finally future study areas for increasing application of the deep gas have been suggested. For reference, this paper was written based on the study results from USGS and Gas Research Institute(GRI), for the United States is doing the most active R&D in the deep gas area, and thus, has many reliable data.

  • PDF

Experimental Study on Oil Separation from Fry-dried Low-rank Coal

  • Ohm, Tea-In;Chae, Jong-Seong;Lim, Jae-Ho;Moon, Seung-Hyun
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • Low-rank coal with high water content (32.3 wt%) was dried by fry drying, and the fuel characteristics of the dried coal from which the oil was separated by using a high-speed centrifugal separator were analyzed. After fry drying for 6 min and 10 min, the water content decreased to 5.0 wt% and 4.2 wt% respectively. The higher calorific value (HCV) of the coal increased remarkably after fry drying, from 11,442.0 kJ/kg-wet. The oil content of the fry-dried coal was 15.0 wt% and it decreased with an increase in the reheating temperature: 9.7 wt% at $80^{\circ}C$ to 9.3 wt% at $100^{\circ}C$, and then to 8.5 wt% at $120^{\circ}C$. The recovered oil could then be reused. According to of thermogravimetric analysis (TGA), there was no difference in the weight loss patterns of the coal samples with different coal diameters at a reheating temperature of $120^{\circ}C$. This was because the amount of oil separated by the centrifugal separator was affected by the reheating temperature rather than the coal diameter. And derivative thermogravimetry (DTG) curves of raw coal before the fry-drying process, a peak is formed at $400^{\circ}C$ in which the volatile matter is gasified. In case of the fry-dried coal, the first peak is generated at $350^{\circ}C$, and the second peak is generated at $400^{\circ}C$. The first peak is caused by the oil that is replaced with the water contained in the coal during the fry-drying process. Further, the peaks of the coal samples in which the oil is separated at a reheating temperature of $80^{\circ}C$, $100^{\circ}C$, $120^{\circ}C$, respectively are smaller than that of the coal in which the oil is not separated, and this is caused by that the oil is separated by the centrifugal separator.

Effect of SO2 on NOx Removal Performance in Low Temperature Region over V2O5-Sb2O3/TiO2 SCR Catalyst Washcoated on the Metal Foam (저온영역에서 메탈폼에 코팅된 V2O5-Sb2O3/TiO2 SCR 촉매의 NOx 저감성능에 미치는 SO2 영향에 관한 연구)

  • Na, Woo-Jin;Park, Young-Jin;Bang, Hyun-Seok;Bang, Jong-Seong;Park, Hea-Kyung
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.132-138
    • /
    • 2016
  • The emission of SO2 is inevitable in case of combustion of most fossil fuels except LNG in commercial power plant which has a bad effect on the durability of SCR catalyst. To develop a low temperature SCR catalyst which has a high NOx removal performance and excellent durability to SO2, V2O5/TiO2 catalysts were prepared by coating on the metal foam substrate with the impregnation amount of Sb2O3 as promotor. This study has evaluated the NOx removal performance and the durability to SO2 on a laboratory scale atmospheric reactor and analyzed the properties of the prepared catalysts by means of porosimeter, BET, SEM (scanning electron microscope), EDX (energy dispersive x-ray spectrometer), XPS (X-ray photoelectron spectroscopy). It was found that the surface area of catalyst increased with the impregnation amount of Sb2O3 and the NOx removal performance showed the highest value at the 2 wt% impregnation of Sb2O3. This results was considered to be due to the optimum active site on the catalyst surface. And also, Sb2O3 impregnated catalysts presented that NOx removal performance was maintained despite the exposure to SO2 for 5 hours. Therefore it was confirmed that metal foam SCR catalyst for low temperature could be manufactured with the optimum control of Sb2O3 impregnation according to the SO2 presence or not.

Simultaneous Removal of NO and SO2 using Microbubble and Reducing Agent (마이크로버블과 환원제를 이용한 습식 NO 및 SO2의 동시제거)

  • Song, Dong Hun;Kang, Jo Hong;Park, Hyun Sic;Song, Hojun;Chung, Yongchul G.
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.341-349
    • /
    • 2021
  • In combustion facilities, the nitrogen and sulfur in fossil fuels react with oxygen to generate air pollutants such as nitrogen oxides (NOX) and sulfur oxides (SOX), which are harmful to the human body and cause environmental pollution. There are regulations worldwide to reduce NOX and SOX, and various technologies are being applied to meet these regulations. There are commercialized methods to reduce NOX and SOX emissions such as selective catalytic reduction (SCR), selective non-catalytic reduction (SNCR) and wet flue gas desulfurization (WFGD), but due to the disadvantages of these methods, many studies have been conducted to simultaneously remove NOX and SOX. However, even in the NOX and SOX simultaneous removal methods, there are problems with wastewater generation due to oxidants and absorbents, costs incurred due to the use of catalysts and electrolysis to activate specific oxidants, and the harmfulness of gas oxidants themselves. Therefore, in this research, microbubbles generated in a high-pressure disperser and reducing agents were used to reduce costs and facilitate wastewater treatment in order to compensate for the shortcomings of the NOX, SOX simultaneous treatment method. It was confirmed through image processing and ESR (electron spin resonance) analysis that the disperser generates real microbubbles. NOX and SOX removal tests according to temperature were also conducted using only microbubbles. In addition, the removal efficiencies of NOX and SOX are about 75% and 99% using a reducing agent and microbubbles to reduce wastewater. When a small amount of oxidizing agent was added to this microbubble system, both NOX and SOX removal rates achieved 99% or more. Based on these findings, it is expected that this suggested method will contribute to solving the cost and environmental problems associated with the wet oxidation removal method.