• Title/Summary/Keyword: 철물

Search Result 101, Processing Time 0.026 seconds

Tensile Properties of Metal Plate Connector in Domestic Softwood Lumber (국산 침엽수 철물접합부의 인장하중 특성)

  • Shim, Kug-Bo;Park, Jung-Hwan;Lee, June-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.96-103
    • /
    • 2003
  • This study was conducted to evaluate the tensile properties of metal plate connector for the domestic major softwoods, such as Korean red pine, Korean white pine, and Japanese larch. The maximum tensile load of Korean red pine was 3,612kgf in AA type, it was 1.2 and 1.7 times higher load than that of Japanese larch and Korean white pine. In EA type, it was 2,704kgf, and 1.1 and 1.5 times higher than the loads of Japanese larch and Korean white pine. The failure modes of metal plate connector were metal plate withdrawal, plate tensile failure, and wood shear block failure. The failure mode of Korean red pine connector was tensile failure of plate, that is reason of the high tensile load resistance for metal plate connections in Korean red pine. The mechanical properties of metal plate connector could be predicted by the Foschi model parameter. In the initial stage, the Korean red pine connector was stiffer than the other species. The design values for metal plate connector per tooth was 25, 22, and 15kgf for Korean red pine, Japanese larch, and Korean white pine in AA type and 19, 17, and 13kgf in EA type.

Evaluation of Structural Performance of Reinforced Concrete Beams Retrofitted by Embedded FRP Rod and Metal Fittings (매입형 FRP봉과 보강철물을 보강한 철근콘크리트 보의 구조성능 평가)

  • Ha, Gee-Joo;Shin, Jong-Hack;Ha, Young-Joo;Kang, Hyun-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.445-452
    • /
    • 2012
  • In this study, experimental research was carried out to evaluate the structural performance of the reinforced concrete beam using strengthening materials (embedded FRP rod, metal fittings) in existing reinforced concrete buildings. Seven reinforced concrete beams comprised of retrofitted embedded FRP rod (BCR series), embedded FRP rod with metal fittings (BCR-AC series), and standard specimen (BSS) were constructed and tested under monotonic loading. Design parameters of test specimens were amount of embedded FRP rod and metal fittings. The test results showed that the maximum load carrying capacity of specimens with embedded FRP rod (BCR series) and embedded FRP rod with metal fittings (BCR-AC series) increased by 21~55% and 21~63%, respectively, in comparison with the standard specimen BSS. BCR series test specimens failed by the adhesion slip and concrete cover separation. BCR-AC series test specimens failed by the adhesion slip due to the confining effect of metal fittings.

Analysis of the Causes of Defects in Fenestration Construction and Their Impacts on Construction Quality - Focused on Door Hardware - (창호철물공사 하자발생 원인과 시공품질 영향분석에 관한 연구 - 문(Door)에 사용되는 창호철물 중심으로 -)

  • Moon, Sang-Deok;Chung, Jae-Min;Ock, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.4
    • /
    • pp.341-350
    • /
    • 2013
  • For this study, a series of interviews with engineers in the Korean construction industry was carried out through a formal workshop format to analyze the causes of the inferior quality of builders' hardware. The authors established the causes of defects in window hardware construction in relation to the three aspects of system, design, and construction as involving the following seven factors: lack of system (including low ability to create construction specifications); low social awareness of the importance of window hardware; low technical capability to create design drawings; low design costs; small manufacturing capacity; low construction cost; and short duration of construction. Among the seven causes, the biggest cause of defects in window hardware construction is the lack of a system (low ability to create construction specifications), followed by low technical capability to create design drawings. In addition, this study carried out basic research to create measures to prevent defects in window hardware construction by analyzing how such causes of defects are distributed depending on the scale of architectural firms and construction companies during actual projects.

A Study about Resistibility of Extracting Nails from Metal Connections on Wood According to Change of Temperature and Humidity (온·습도 변화에 따른 목재 철물 접합부의 못 뽑기 저항성)

  • Kim, Chong-Gun;Park, Cheul-Woo;Yoon, Tae-Ho;Lim, Nam-Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.119-127
    • /
    • 2013
  • In cases of wooden structure and wooden house installed on the outside, metal goods used for basic connection are usually screw bolts, strainless nails and general iron nails. As metal connections on wood are directly exposed to exterior environment, friction resistibility of nails on metal connections declines and continual defects on this are generated and maintenance for it is required. However, experiments and analyses for preparing basic data for improvement of the problems have been not conducted so far and wooden structures with defects are abandoned. Accordingly, by analyzing friction resistibility of connections by each kind of woods and metal goods, the study aims to suggest to use metal goods appropriately by kinds of woods and manufacture conditions with analysis on characteristics of resistibility of extracting nails for solving such problems and to secure basic data for establishing maintenance, repair and reinforcement plans.

Bond Behavior between Parent Concrete and Carbon Fiber Mesh (탄소섬유메쉬와 콘크리트의 부착거동)

  • Yun, Hyun-Do;Sung, Soo-Yong;Oh, Jae-Hyuk;Seo, Soo-Yeon;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.769-777
    • /
    • 2003
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Because carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of enhancing bond of CFM. Therefore if bond strength is sufficient, it will be expect to enhance reinforcement effect. Unless sufficient, expect not to enhance reinforcement effect, because of occuring bond failure between concrete and CFM. In this study, the bond strength and load-displacement response of CFM to the concrete by the direct pull-out test(the tensile-shear test method) were investigated using the experiment and the finite element method analysis with ABAQUS. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

Experimental Study on the Behavior of Building Hardware with Joint Details (접합 방법에 따른 하지철물 구조물의 거동에 관한 실험적 연구)

  • Hong, Seonguk;Kim, Seunghun;Baek, Kiyoul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.190-198
    • /
    • 2018
  • In recent years, non-welded building hardware has been installed by bolt assembly is used. The non-welded building hardware method can reduce accidents caused by welding, and can be constructed by bolt assembly, which can reduce labor costs and shorten the construction period. However, there is a need for a method to compensate for the occurrence of buckling at the time of construction. The purpose of this study is to evaluate the behavior of joints between steel pipe and fastener and to evaluate the behavior of joints of non-welded and welded hardware frame. As a result, it was found that the foundation steel structure without welded joints was deformed to a rotation angle of member much larger than the allowable interlayer displacement angle 0.01 to 0.02 required according to the seismic load rating in the seismic load resistance system.

Effects of Reinforcing Method Influnced to the Shear Strength of Vertical and Horizontal Joints in Precast Concrete Large Panel Structures -Focused on the Vertical Joints and Slab-Slab Type Horizontal Joints- (대형판조립식 구조 수직.수평접합부의 전단강도에 미치는 보강방법의 영향-수직접합부 및 슬래브-슬래브 수평접합부를 중심으로-)

  • Chung, Lan;Park, Hyun-Soo;Cho, Seung-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.171-179
    • /
    • 1996
  • A proposal of the basic fbrm on the design of joint parts that can increase the shear strength by the useful joint shapes of each member is intended. The vertical joint parameters are the number of' shear key and a variety of' reinfbrcement details and the horizontal joint paramctcrs arc t,hc number of shear key and the direction of' shear f'orcc. 10 PC panel vortical joint arid 12 PC panel horizontal joint specimens were tested to investigate the effects of these parameters. Test results show that : 1. The ductility of the test specimen that has the horizontal reinforcing steels is larger than that does not have. 2. The maximum resisting force of round bar specimen is similar to that of strand wire specimen under the condition of fixed horizontal displacement.

An Experimental Study on the Shear Behaviour of Face Brick Wall Tied with the Screw Connector (나선형 긴결철물을 이용한 조적치장벽체의 전단거동에 관한 실험연구)

  • Kwon, Ki Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.145-154
    • /
    • 2007
  • As buildings are built higher and their service life made longer, face brick walls are also required to be constructed in an easy and systematic manner, and to ensure their satisfying structural performance, inspectingly, against lateral load. Therefore this study aims to investigate the structural performance of face brick walls constructed by a new method using screwed stainless steel connectors and provide fundamental experiment data for field application of this method. The results of this study indicated that the face brick wall tied with screw connectors had better shear capacity against rocking motion than that of the wall constructed with ordinary tie bars when their tie spacing was the same. Based on the good performance of the wall tied with the screw connector, it is also expected that the spiral anchors developed in this study can possibly applied to high-rise by adjusting the spacing of the anchors considering the difference of dimensions.

Tenon Reinforcement Technique on Tradition Wooden Structures Using Spiral Hardware (나선형 철물을 사용한 전통 목구조의 장부 보강기법)

  • Yu, Hye Ran;Kwon, Ki Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.104-112
    • /
    • 2012
  • The failure of tenon in a traditional wood-framed structure may collapse of the entire structure. This study evaluates the strength and stiffness of tenon joints between the beams and pillars through experimental study and suggests reinforcing method of the tenon joint without dismantling the main structures. The main experimental parameters are the number, distance, shape, and inserting depth of spiral-shaped reinforcing steels. As the thickness of the tenon in beams increases, the strength and the initial shear stiffness of the joint increases and, however, the tenons in pillar becomes weaker, resulting in the safety problem of the structure. It is recommended that three spiral-shaped reinforcing steels be placed in the central parts of the tenon to effectively improve the strength and the shear stiffness of the joint.

Strengthening of shear resistance of masonry walls (조적벽체의 전단강도 향상 방안에 관한 연구)

  • Kang, Sung-Hun;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.193-196
    • /
    • 2008
  • This paper presents an experimental study to investigate enhanced performance of the masonry walls strengthened in shear and ductility using honeycomb steel mesh. The performance of masonry walls strengthened with steel mesh will compare with unreinforced masonry walls to show the performance of reinforced masonry walls. According to the experiment, it is expected that this system is effective to enhance the shear strength and ductility of the masonry walls.

  • PDF