• Title/Summary/Keyword: 철도표면

Search Result 141, Processing Time 0.026 seconds

Development of Chloride Penetration Analysis Program Considering Environmental Conditions (환경조건을 고려한 염소이온 침투해석 프로그램 개발)

  • Kim, Ki Hyun;Jang, Seung Yup;Cha, Soo Won;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.709-718
    • /
    • 2008
  • Developed is a chloride penetration analysis program in which changes of environmental conditions such as temperature, humidity and external chloride concentration, and the diffusion, convection and binding of chlorides are considered. In order to consider the changes of environmental conditions, analyses for temperature and moisture distribution are implemented simultaneously, and variation of diffusion coefficients due to temperature, humidity and age is also considered. By comparing the calculated total chloride contents with some experimental data, it has been confirmed that the proposed analysis program can trace measured chloride distribution well. Also, through some example analyses, the mechanism of accumulation of chlorides at near surface and acceleration of corrosion of steel reinforcement in case that the moisture distribution changes according to repeated drying and wetting cycles have been verified.

An Efficient Detection Method for Rail Surface Defect using Limited Label Data (한정된 레이블 데이터를 이용한 효율적인 철도 표면 결함 감지 방법)

  • Seokmin Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.83-88
    • /
    • 2024
  • In this research, we propose a Semi-Supervised learning based railroad surface defect detection method. The Resnet50 model, pretrained on ImageNet, was employed for the training. Data without labels are randomly selected, and then labeled to train the ResNet50 model. The trained model is used to predict the results of the remaining unlabeled training data. The predicted values exceeding a certain threshold are selected, sorted in descending order, and added to the training data. Pseudo-labeling is performed based on the class with the highest probability during this process. An experiment was conducted to assess the overall class classification performance based on the initial number of labeled data. The results showed an accuracy of 98% at best with less than 10% labeled training data compared to the overall training data.

Evaluation of Grade-Classification of Wood Waste in Korea by Characteristic Analysis (국내 폐목재 특성분석을 통한 등급화 평가)

  • Kim, Joung-Dae;Park, Joon-Seok;Do, In-Hwan;Hong, Soo-Youl;Oh, Gil-Jong;Chung, David;Yoon, Jung-In;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1102-1110
    • /
    • 2008
  • This research was performed to analyze the characteristics of wood wastes from origin and to suggest grade-classification for them. Korean proximate analysis was conducted, and heating value, heavy metals and Cl concentrations were analyzed for gradeclassification. Wood wastes were sampled from forest, living, construction and demolition, and industrial areas with origin. Moisture content of most wood wastes was ranged in 5$\sim$10%. VS (volatile solids) and ash contents of them showed > 95% and < 5%, respectively. Most wood wastes except wood for growing mushroom permitted the standard (low heating value $\geq$ 3,500 kcal/kg) for refusederived fuel. CCA (Cr, Cu, As) concentration of wood wastes used in bench, wasted fishing boat, and railroad crosstie was higher than that of the other ones. Cl content showed approximately 1.3% in wood box for fish and $\leq$ 0.2% in the other wood wastes. Cl content of all wood wasted used in this research permitted the standard (Cl $\leq$ 0.2%, dry weight basis) for refuse-derived fuel. If the wood wastes were classified in 3-grade, plywoods would be in 2nd grade, and MDF (medium density fiber), wooden bench, painted electric wire drum, wasted fishing boat, and railroad crosstie be in 3rd grade.

Inspecting Stablity of DSM method with Grouting on Tunnel Face using Chamber Test and Numericlal Analysis (토조실험과 수치해석을 이용한 막장면 그라우팅 DSM공법의 안정성 검토)

  • Kim, Young-Uk;Park, Young-Bok;Kim, Li-Sak;Kim, Nak-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.677-683
    • /
    • 2016
  • In urban areas, underground tunnel construction sites have spread widely to accommodate rapidly increasing traffic volume along with a high-degree economic growth. Earth tunneling might be adapted frequently for the underground space securing, and various tunneling methods have been developed to stabilize the tunnel face and crown. Among them, the DSM (divided shield method) is gaining popularity for its enhanced stability and construction efficiency. This method has its foundation from the Messer Shield method, which is one of the trenchless special tunneling methods. This study examined the effects of face reinforcement on construction the sequence through a large scale soil chamber test and numerical analyses. The chamber has a size of a 1/2 scale of the real tunnel. Surface settlements were measured according the tunneling process. Commercially available software, MIDAS GTS, was used for numerical analysis and its result was compared with the values obtained from the chamber test. The results of the study show that both settlements of the embanked soils and the stress of the tunnel girder are located within the safe criteria. Overall, this study provides basic data and the potential of using a reinforced tunnel face to enhance DSM applications.

Numerical Analysis of Resin Filling Process for a Molded Dry-type Potential Transformer (몰드형 건식 계기용 변압기 제작을 위한 수지 충진 해석 연구)

  • Kim, Moosun;Jang, Dong Uk;Kim, Seung Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.511-517
    • /
    • 2016
  • Current oil-type potential transformers for trains are filled with insulating oil, which could have problems like explosions due to rising inner pressure during train operation. Therefore, mold and dry-type potential transformers are being developed to prevent explosions. One problem in manufacturing mold-type transformers is preventing void formation around the coiled core inside the mold during epoxy filling, which could cause an electrical spark. Micro voids can remain in the resin after filling, and macro voids can occur due to the structure shape. A transformer that is being developed has a cavity at the junction of the core and the coil for better performance, and when highly viscous epoxy flows inside the cavity channel, macro voids can form inside it. Therefore, in this study, the free-surface flow of the mold filling procedure was analyzed numerically by applying the VOF method. The results were used to understand the phenomena of void formation inside the cavity and to modify the process conditions to reduce voids.

A Study on Critical Speed Enhancement of High-speed Train Passenger Car (고속열차 객차의 임계속도 향상에 관한 연구)

  • Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.603-610
    • /
    • 2016
  • Over 12 years have passed since the first commercial operation of a Korean high-speed train. Since then, the transport capacity of the high-speed lines has become almost saturated. Therefore, studies have been carried out to increase the operating speed of the trains in order to increase their transportation capacity. This study was carried out to improve the critical speed of the KTX-Sancheon, Korean high-speed train, in order to increase its operating speed. A dynamic analysis of the KTX-Sancheon train was performed using the contact data obtained from the wheel wear profiles that were measured from a KTX-Sancheon train in commercial operation. The analysis results were verified by comparing them with the measurement acceleration data obtained from KTX-Sancheon. The suspension parameters were optimized to improve the operation speed. The critical speed of KTX-Sancheon was increased by 9.4% after the optimization by the response surface method. The optimized suspension parameters are expected to be used for the new bogie design to increase the operating speed of KTX-Sancheon from 300km/h to 350km/h.

Dynamic Frictional Behavior of Artificial Rough Rock Joints under Dynamic Loading (진동하중 하에서 거친 암석 절리면의 동력 마찰거동)

  • Jeon Seok-Won;Park Byung-Ki
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.166-178
    • /
    • 2006
  • Recently, the frequency of occurring dynamic events such as earthquakes, explosives blasting and other types of vibration has been increasing. Besides, the chances of exposure for rock discontinuities to free faces get higher as the scale of rock mass structures become larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, artificially fractured rock joint specimens were prepared in order to examine the dynamic frictional behavior of rough rock joint. Roughness of each specimen was characterized by measuring surface topography using a laser profilometer and a series of shaking table tests was carried out. For mated joints, the static friction angle back-calculated ken the yield acceleration was $2.7^{\circ}$ lower than the tilt angle on average. The averaged dynamic friction angle for unmated joints was $1.8^{\circ}$ lower than the tilt angle. Displacement patterns of sliding block were classified into 4 types and proved to be related to the first order asperity of rock joint. The tilt angle and the static friction angle for mated joints seem to be correlated to micro average inclination angle which represents the second order asperity. The tilt angle and the dynamic friction angle for unmated Joints, however, have no correlation with roughness parameters. Friction angles obtained by shaking table test were lower than those by direct shear test.

A Study on the Deformation Behavior of the Segmental Grid Retaining Wall Using Scaled Model Tests (조립식 격자 옹벽의 변형거동에 관한 모형실험 연구)

  • Bae, Woo-Seok;Kwon, Young-Cheul;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.350-359
    • /
    • 2007
  • Most large cut slopes of open pit mines, roadways, and railways are steeply inclined and composed with rocks that do not contain soils. However, these rock slopes suffer both weathering and fragmentation. In the case of steep slopes, falling rock and collapse of a slope may often occur due to surface erosion. Cast-in place concrete and rubble work are the most widely used earth structure-based pressure supports that act as restraints against the collapse of the rock slope. In order to overcome the shortcomings of conventional retaining walls, a segmental grid retaining wall is being used with connects precasted segments to construct the wall. In this study, laboratory model test was conducted to estimate deformation behavior of segmental grid retaining wall with configuration of rear strecher, height and inclination of the wall. In order to examine the behavior characteristics of a segmental grid retaining wall, this research analyzes the aspects of spacial displacement through relative displacement according to change in the inclination of the wall. Also, the walls behavior according to the formation and status of the rear stretcher which serves the role of transferring the load from the header and the stretcher which make up the wall, the displacement of backfill materials in the wall, and the location of the maximum load were surveyed and the characteristics of displacement in the segmental grid retaining wall were observed. The test results of the segmental grid retaining wall showed that there was a sudden increase in failure load according to the decrease in the wall's height and the size of the in was greatly decreased. Furthermore, it revealed that with identical inclination and height, the structure of the rear stitcher did not greatly affect the starting point or size of maximum horizontal displacement, but rather had a stronger effect on the inclination of the wall.

Investigation of Friction and Wear Characteristics of Cast Iron Material Under Various Conditions (다양한 조건에 따른 주철 소재의 마찰/마모 특성에 관한 연구)

  • Joo, Ji-Hoon;Kim, Chang-Lae;Nemati, Narguess;Oh, Jeong-Taek;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.765-772
    • /
    • 2015
  • Cast iron is widely used in fields such as the transport and heavy industries. For parts where contact damage is expected to occur, it is necessary to understand the friction and wear characteristics of cast iron. In this study, we use cast iron plates as the specimens to investigate their friction and wear characteristics. We perform various experiments using a reciprocating type tribotester. We assess the frictional characteristics by analyzing the friction coefficient values that were obtained during the sliding tests. We observe the wear surfaces of cast iron and steel balls using a scanning electron microscope, confocal microscope, and 3d profiler. We investigate the friction and wear characteristics of cast iron by injecting sand and alumina particles having various sizes. Furthermore, we estimate the effect of temperature on the friction and wear characteristics. The results obtained are expected to aid in the understanding of the tribological characteristics of cast iron in industry.

Development of a Coupled Eulerian-Lagrangian Finite Element Model for Dissimilar Friction Stir Welding (Coupled Eulerian-Lagrangian기법을 이용한 이종 마찰교반용접 해석모델 개발)

  • Lim, Jae-Yong;Lee, Jinho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.7-13
    • /
    • 2019
  • This study aims to develop a FE Model to simulate dissimilar friction stir welding and to address its potential for fundamental analysis and practical applications. The FE model is based on Coupled Eulerian-Lagrangian approach. Multiphysics systems are calculated using explicit time integration algorithm, and heat generations by friction and inelastic heat conversion as well as heat transfer through the bottom surface are included. Using the developed model, friction stir welding between an Al6061T6 plate and an AZ61 plate were simulated. Three simulations are carried out varying the welding parameters. The model is capable of predicting the temperature and plastic strain fields and the distribution of void. The simulation results showed that temperature was generally greater in Mg plates and that, as a rotation speed increase, not the maximum temperature of Mg plate increased, but did the temperature of Al plate. In addition, the model could predict flash defects, however, the prediction of void near the welding tool was not satisfactory. Since the model includes the complex physics closely occurring during FSW, the model possibly analyze a lot of phenomena hard to discovered by experiments. However, practical applications may be limited due to huge simulation time.