• Title/Summary/Keyword: 철도선형

Search Result 311, Processing Time 0.03 seconds

Formulation and Evaluation of Railway Optimal Alignment Design Model (철도 최적 노선설계 모형의 해석과 적용)

  • Kim, Jeong Hyun;Shin, Youngho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1845-1850
    • /
    • 2014
  • Railway operators have given a lot of efforts to determine the railway route of the minimum cost. In order to determine the optimal alignment, the alignment should be allocated satisfying the design criteria on various geographical condition with the minimum earth works. The determination of the optimal railway alignment is a kind of combination optimization because that must consider various design elements. This study developed a numerical model to determine the optimal railway alignment with the minimum construction cost. The problem was analyzed by the genetic algorithm, and the concept of the optimal alignment was established with the results from the analyses. The methodology was applied to a fictitious rail construction section and the result was evaluated. This methodology is meaningful considering the fact that the cost for energy is greater than that of the construction.

Evaluation of Uplift Forces Acting on Fastening Systems at the Bridge Deck End Considering Nonlinear Behaviors of the Fastening Systems (체결장치 비선형 거동을 고려한 교량 단부에서의 체결장치 압상력 평가)

  • Yang, Sin Chu;Kim, Hak Hyung;Kong, Jung Sik
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.521-528
    • /
    • 2017
  • In this study, vertical loading tests were conducted to investigate the nonlinear behaviors of the fastening systems that have generally been used in the concrete track of domestic railway lines. Nonlinear load-displacement curve models were derived based on the test results. The uplift forces generated in the fastening systems were evaluated by applying the derived nonlinear models as well as the existing linear models. The influence of the factors on the maximum uplift force of the fastening system was analyzed through a parameter study on the distance between neighboring sleepers, the horizontal distance between the center of the bearing and the nearest fastening system from the deck end, and the height of the bridge girder. From the evaluation results it is known that, for economical track and bridge design, due to deck end deformation, it is necessary to consider the nonlinear behavior of the fastening system in the calculation of the uplift force of the fastening systems.

Application of Linear Schedule Chart for Schedule Management of Linear Construction Project (선형시설물 공정관리 활용을 위한 선형공정표 활용 시스템 구축 방안)

  • Lee, Jaehee;Kang, Hyojeong;Kang, Leenseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.2
    • /
    • pp.13-23
    • /
    • 2023
  • Unlike building construction projects, where the activity is repeatedly carried out in a limited area, civil engineering projects such as roads and railroads are carried out in a linear type in a horizontal working space over several tens of kilometers. Each activity is managed with a station number that has a unit of distance from the starting point to the end point. For this reason, since the work location information of the activity is a major management factor, the Gantt chart system that expresses only schedule information may have limitations. In this study, authors propose a method for constructing a linear schedule chart that can simultaneously express schedule information indicating the start and finish dates and location information indicating the start and end positions of each activity, and develop a system for generating a linear schedule chart. In the study, the coordinate axes of the linear schedule chart consisted of distance and date values on the X and Y axes, respectively, and each activity was expressed as a symbol that can infer the type of work to increase the visibility of the linear schedule chart compared to the simple bar chart method. The linear schedule chart generation system was reviewed for practical applicability by utilizing the actual schedule data of bridge structures in a railroad project.

A Study on the Fatigue Crack Evaluation Method of Railway Bogie Frame (철도차량 대차를 피로균열 평가법 연구)

  • Jun, Hyun-Kyu;Seo, Jung-Won;Lee, Dong-Hyong;Kim, Hyeong-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.16-24
    • /
    • 2009
  • In this study, fatigue crack growth rate of a cracked railway bogie frame under variable amplitude loading is predicted by applying linear elastic fracture mechanics. For this purpose, we find the critical points by reference surveying on cracked railway bogie frames. And we make an effective load history by synthesizing the dynamic load measured from the critical points of railway bogie frame during commercial line operation and the static load calculated from structural analysis. Crack growth analyses are performed at the 3 critical points under the commercial operation loading condition by assuming an initial crack size as 40 mm. and the results are compared with the experimental results from Japanese railway bogie frame crack growth case. From the analysis results, we find that around 500,000 km operating distance is necessary to bring crack growth from the initial crack to unstable crack. And it takes around 3.8 normal operating years. We conclude that it is enough time to detect the crack between normal maintenance period.

Estimating Line Capacity Considering High-Speeding and Diversification of Trains (열차 속도향상과 다양화를 감안한 선로용량 산정에 관한 연구)

  • Ki, Hyung-Seo;Park, Dong-Joo;Choi, Jong-Bin;Choo, Jun-Sup
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.623-630
    • /
    • 2009
  • The Korean railway system is a mass transit system consisting of a variety of train types such as common trains, high-speed train (KTX) and Metropolitan Express Railway (EMU). Its operation is based on the official timetable and it provides us with safe, accurate, quick and comfortable service. The objective of this study is to propose and prove more practical method for estimating line capacity by considering high-speeding and diversification of trains. In particular, the focus of this study is to reduce the discrepancy between the result of the theoretical line capacity estimation and the real line capacity of the operating agency of the Korean railway. In order to achieve the object, this study introduces a new railway capacity notion by considering TPS of line alignment, the operation type, train control and signaling system, etc. Through a practical schedule diagram exemplification, the result of the proposed method is verified as well.

Estimating Line Capacity Considering High-Speeding and Diversification of Trains (열차 속도향상과 다양화를 감안한 선로용량 산정에 관한 연구)

  • Ki, Hyung-Seo;Park, Dong-Joo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1839-1850
    • /
    • 2009
  • The Korean railway system is a mass transit system in which a various types of trains such as common trains, high-speed train (KTX), Metropolitan Express Railway (EMU) are operated. It is operated based on a timetable and provides us with safety, regularity, quickness and comfortable service. The objective of this study is to propose a method for estimating line capacity considering high-speeding and diversification of trains. In particular, the focus of this study is on the closing gap between the result of the existing line capacity estimation method and the real-world line capacity of the operating agency of the Korean railway. For this, this study introduces a new railway capacity definition by considering TPS of line alignment according to the operation type, train control and signaling system, etc. The verification of the proposed method using a practical schedule diagram exemplification is discussed as well.

  • PDF

Study on Accident Prediction Models in Urban Railway Casualty Accidents Using Logistic Regression Analysis Model (로지스틱회귀분석 모델을 활용한 도시철도 사상사고 사고예측모형 개발에 대한 연구)

  • Jin, Soo-Bong;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.482-490
    • /
    • 2017
  • This study is a railway accident investigation statistic study with the purpose of prediction and classification of accident severity. Linear regression models have some difficulties in classifying accident severity, but a logistic regression model can be used to overcome the weaknesses of linear regression models. The logistic regression model is applied to escalator (E/S) accidents in all stations on 5~8 lines of the Seoul Metro, using data mining techniques such as logistic regression analysis. The forecasting variables of E/S accidents in urban railway stations are considered, such as passenger age, drinking, overall situation, behavior, and handrail grip. In the overall accuracy analysis, the logistic regression accuracy is explained 76.7%. According to the results of this analysis, it has been confirmed that the accuracy and the level of significance of the logistic regression analysis make it a useful data mining technique to establish an accident severity prediction model for urban railway casualty accidents.

Control of Railway Power Quality Conditioner for AC Electrified Railway Systems (교류 전기철도 급전시스템을 위한 철도용 전기품질 보상장치의 제어방법)

  • Park, Han-Eol;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.48-54
    • /
    • 2010
  • The AC electrified railway systems have the power quality problems such as the harmonic distortion, the reactive power and the three-phase imbalance because of the electrical load characteristics of locomotives, which are non-linear single-phase. These power quality problems have a bad effect on not only AC electrified railway systems but also other electric systems connected together. The RPQC (railway power quality conditioner) can compensate such power quality problems in the AC electrified railway systems. In this paper, a novel RPQC control method based on SRF (synchronous-reference-frame) control is proposed. The proposed RPQC control method can compensate effectively the harmonic currents, the reactive power and the load imbalance. The validity and the effectiveness of the proposed RPQC control method are illustrated through the simulations.

Settlement characteristics of rock/soil mixture subgrade of slab track with variation of degree of saturation (포화도 변화에 따른 슬래브궤도 혼합성토 노반의 침하 특성)

  • Park, Seong-Yong;Kim, Dae-Sang
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1506-1512
    • /
    • 2010
  • In this study, model tests were performed to investigate the settlement characteristics of the rock/soil mixture subgrade with the many portion of mudstone due to the cyclic train loading in high-speed railway. Specially, from the tests varying initial degree of saturation, effects of increment of the degree of saturation in the subgrade due to rainfall or elevation of ground water table under cyclic train loading on the deformation characteristics were analyzed. From the results, in the low degree of saturation, settlement converged to some value. However, in the condition of degree of saturation larger than some value, settlement rapidly increased. Therefore, it was found that it is important to maintain the degree of saturation of subgrade below the specific level to prevent the settlement of subgrade.

  • PDF

A Study on the Window Glass Pressure for High-speed Train (고속철도차량의 유리창 압력에 관한 연구)

  • Kwon, Hyeok-Bin;Chang, Dae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.371-375
    • /
    • 2010
  • In order to decide the strength requirement of the window glass for the high-speed train, the pressure change during the passage of the EMU type high-speed train has been numerically simulated. Based on the calculation results, the pressure difference between the inner and outer pressure of the cabin has been calculated to yield the amount of load acting on the window glass of the cabin. To simulate the pressure field generated by the high-speed train passing through the tunnel, computational fluid dynamics based on the axi-symmetric Navier-Stokes equation has been employed. The pressure change inside a train has been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train.