• Title/Summary/Keyword: 철근 길이 산정

Search Result 79, Processing Time 0.023 seconds

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

Evaluation of Bond Strength for FRP Hybrid Bar According to Coating Methods using Silica Sands (규사 코팅 방법에 따른 FRP Hybrid Bar의 부착강도 평가)

  • Jung, Kyu-San;Park, Ki-Tae;You, Young-Jun;Seo, Dong-Woo;Kim, Byeong-Cheol;Park, Joon-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.118-125
    • /
    • 2017
  • In this study, we examined the bond performance of FRP Hybrid Bars. FRP Hybrid Bars are developed by wrapping glass fibers on the outside of deformed steel rebars to solve the corrosion problem. The surface of the FRP Hybrid Bars was coated with resin and silica sand to enhance its adhesion bonding performance with concrete. Various parameters, such as the resin type, viscosity, and size of the silica sand, were selected in order to find the optimal surface condition of the FRP Hybrid Bars. For the bonding test, FRP Hybrid Bars were embedded in a concrete block with a size of 200 mm3 and the maximum load and slip were measured at the interface between the FRP Hybrid Bar and concrete through the pull-out test. From the experimental results, the maximum load and bond strength were calculated as a function of each experimental variable and the resin type, viscosity and size of the silica sand giving rise to the optimal bond performance were evaluated. The maximum bond strength of the specimen using epoxy resin and No. 5 silica sand was about 35% higher than that of the deformed rebar.

Finite Element Analysis of Reinforced Concrete Masonry Infilled Frames with Different Masonry Wall Thickness Subjected to In-plane Loading (채움벽 두께에 따른 철근콘크리트 조적채움벽 골조의 면내하중에 대한 유한요소해석)

  • Kim, Chungman;Yu, Eunjong;Kim, Minjae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • In this study, finite element analyses of masonry infilled frames using a general purpose FE program, ABAQUS, were conducted. Analysis models consisted of the bare frame, infilled frames with masonry wall thickness of 0.5B and 1.0B, respectively. The masonry walls were constructed using the concrete bricks which were generally used in Korea as infilled wall. The material properties of frames and masonry for the analysis were obtained from material tests. However, four times increased the tensile strength was used for 1.0B wall, which is seemingly due to the differences in locating the bricks. The force-displacement relation and development of crack from the FE analysis were very similar to those from the experiments. From the FEA results, contact force between the frame and masonry, distribution of shear force and bending moments in frame members were analyzed. Obtained contact stress shows a trianglur distribution, and the contact length for 0.5B speciment and 1.0B specimen were close to the value estimated using ASCE 41-06 equation and ASCE 41-13 equation, respectively. Obtained shear force and bending moment distribution seems to replicate actual behavior which originates from the contact stress and gap between the frame and masonry.

Evaluation for Approximate Bending Moment Coefficients of Non-Composite Form Deck One-Way Slab considering Unequaled Elastic Deflection of Steel Beams (철골보의 부동탄성처짐을 고려한 비합성데크 일방향 슬래브의 근사적인 휨모멘트 계수 평가)

  • Kim, Ho Soo;Lim, Young Do
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.373-383
    • /
    • 2006
  • In a steel structural system, noncomposite form deck one-way slab is the plate element supported by four-edged steel beams with unequaled stiffness. However, design criterion has analyzed the one-way slab as the continuous beam. Because the end beams that support the one-way slab have elastic supports t hat cause different deflections according to the support conditions and locations, the bending moments corresponding to the support ic support effect is not considered in the design criterion. Accordingly, to conduct a reasonable estimation of approximate moment coefficients considering the unequaled elastic support conditions, this study analyzes and estimates various models with varia bles for the ratios of live load to dead load and pattern arangements of live loads and span lengths. The analytical methods considering the finite three-dimensional plate element, the two-dimensional elastic support and the infinite stifnes suport are performed.

Evaluation of Bond-Slip Behavior of High Strength Lightweight Concrete with Compressive Strength 120 MPa and Unit Weight 20 kN/m3 (압축강도 120 MPa, 단위중량 20 kN/m3 고강도 경량 콘크리트 부착-슬립 거동 평가)

  • Dong-Gil Gu;Jun-Hwan Oh;Sung-Won Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The demand for lightweight and high-strength materials is increasing. However, studies on the bond of concrete and reinforcing bars for high-strength lightweight concrete with a compressive strength of 120 MPa and a unit weight of 20 kN/m3 to structural members are lacking. Therefore, in this paper, 108 specimens of high-strength lightweight concrete with a compressive strength of 120 MPa and a unit weight of about 20 kN/m3 were fabricated, a direct pull-out test was performed, and the bond characteristics were evaluated by comparing the test results with design code. Compared to the decrease in unit weight, the solid bubble shows relatively little reduction in compressive strength and modulus of elasticity. It was f ound to have larger slip and parameter values than concrete with low compressive strength and unit weight.

Influence of Column Aspect Ratio on the Punching Shear Strength of Flat Plate Slab-Column Edge Connections (플랫 플레이트 슬래브-외부기둥 접합부의 뚫림전단강도에 대한 기둥 형상비의 영향)

  • Shin, Sung-Woo;Choi, Myung-Shin;Kim, Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.121-129
    • /
    • 2007
  • The aim of this study is to investigate punching shear strength of exterior connections in the flat plate structure with rectangular column. To inspect the effect of column aspect ratios on the punching shear behavior, eight specimens for exterior connection were made and tested. In this experimental program the length of critical perimeter was kept constant, while column aspect ratio varied from 2.0 to 4.5. Two levels of concrete strength and slab reinforcement ratio were also considered. As the column aspect ratio increased, the punching shear strengths are decreased. The decrement of punching shear strength was small in specimens with high aspect ratio of column.

Ductile Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스거더의 연성 거동)

  • Jeong, Min-Seon;Park, Sung-Yong;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.282-289
    • /
    • 2017
  • The flexural behavior tests of UHPC segmental Box girder which has 160MPa compressive strength and 15.4m length were carried out. The test variables are area of prestressing wires, volume fraction of steel fibers and longitudinal reinforcing bars in upper flange and web. PS tendons which has 32 strands of 15.2mm diameter in lower flange, 24 strands and 14 strands in lower flange were arranged and volume fraction of 2%, 1.5% and 1.0% is used in box girder concrete. UHPFRC box girder which has 32 strands in lower flange showed the over reinforcement and brittle behavior. UHPFRC box girder which has 24 strands showed the similar peak load as 32 strands girder and ductile behavior as large deflection. UHPFRC box girder which has 14 strands showed half of the peak load of 24 strands box girder and ductile behavior. After the application of the formular for the reinforcement index to the behavior of the UHPFRC box girders, reinforcement index does not determine the characteristic of behavior of UHPFRC box girder exactly. So the index should consider the dimension precisely and modify the reference value corresponding to the 0.005 strain of the prestressing strands.

Laboratory Experiments for Evaluating Necking Defects in Bored Piles Embedded in Sandy Soils Using Electromagnetic Waves (전자기파를 이용한 모래 지반에 설치된 현장타설말뚝의 네킹 결함 평가를 위한 실내 모형실험)

  • Lee, Jong-Sub;Kim, Youngdae;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.5
    • /
    • pp.25-34
    • /
    • 2020
  • Studies on nondestructive evaluation methods using electromagnetic waves have been commonly conducted to evaluate necking defects in bored piles. However, the propagation of electromagnetic waves are affected by water contents of surrounding materials. This study aims to investigate a suitability of electromagnetic waves for evaluating necking defects in bored piles embedded in sandy soils through laboratory experiments. Laboratory experiments are performed with a model pile having a necking defect. The diameter and length of model pile are 600 mm and 1 m, respectively, and the model pile is embedded in sandy soils with different water contents of 10%, 20%, and 30%. For the propagation of electromagnetic waves, a transmission line is configured in reinforcement cage using an electrical wire. The generation and detection of electromagnetic waves are conducted using a time domain reflectometer. Experimental results show that the peak amplitude of electromagnetic waves reflected at the necking defect decreases with an increase in the water content in sandy soils. In addition, the velocity of electromagnetic waves reflected from the toe of the model pile decreases win an increase in the water content. However, estimated locations of the necking defects are almost the same to that of the actual location of the necking defect. This study demonstrates that electromagnetic waves may be an effective method for evaluating necking defects in bored piles embedded in sandy soils

Experimental Evaluation of the Flexural Behavior of SY Permanent Steel Form for RC Beam and Girder (SY 비탈형 보 거푸집의 휨 거동에 대한 실험적 고찰)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • Currently, in the domestic construction industry, the free web method has been emerging as a potential solution to the shortage of skilled workers due to the prolonged COVID-19 crisis, as it helps in securing economic feasibility through shortening the construction period and reducing labor costs. To consider one part of the construction method, in this study, the bending behavior according to the load was evaluated for the SY slope-type beam formwork, which was manufactured at a factory, assembled with rebar, brought into the site, and then poured into the site. For the SY Beam standard cross-sectional shape, a cross-sectional dimensional width of 400mm and depth 600mm determined through structural modeling using the MIDAS GEN program were applied. A total of 6 specimens were made with a member length of 5,000mm, 5 specimens and one RC specimen in the comparison group were manufactured in real-size format using the thickness of the steel plate(0.8, 1.0, 1.2mm) as a variable, and bending experiments were performed. In the bending test, the steel plate deck showed high initial stiffness and maximum strength as it yielded, which showed that it sufficiently contributed to the flexural strength. It is judged that additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are needed to derive the appropriate steel plate thickness and the method for calculating the tensile force contribution of the steel plate to secure the manufacturing, construction and economic feasibility of SY Beam in the future.