• Title/Summary/Keyword: 철근콘크리트 도상

Search Result 5, Processing Time 0.019 seconds

A Study on the Method of preventing from Reduction of AF Track Circuit Signal Current on a Ferroconcrete Roadbed (철근콘크리트 도상에서 AF 궤도회로 신호전류 저감방지대책에 관한 연구)

  • Hong, Hyo-Sik;Yoo, Kwang-Kiun;Rho, Sung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.500-503
    • /
    • 2010
  • Until now, the track circuit with railroad which is a part of an electrical circuit wad used only for the detection of the train location, but as train speed is up to be higher, in order to overcome the limits of ground signal system the railway signal system has changed from the ground signal system to a cab signal system. The power source of the track circuit has also changed from a direct current or a high voltage impulse to an alternating current with high frequency which is a part of the audio frequency. To improve the maintenanability and according to the environment condition, the railway roadbed is rapidly changed to the ferroconcrete roadbed. In case of a track circuit to use an alternating current with high frequency as power source at a ferroconcrete roadbed, the characteristic of the track circuit is brought on a change from a loss of the magnetic combination instead of a leakage current from electric insulation which was caused by the reinforcing iron pod with lattice shape for durability. This paper is shown the influence and the loss of the signal current at AF track circuit on a ferroconcrete in the simulation sheets and presented a proposal for the preventive method from reduction of signal current.

Parametric Crack and Flexural Strength Analyses of Concrete Slab For Railway Structures Using GFRP Rebar (GFRP 보강근을 적용한 교량용 콘크리트 도상슬래브의 균열 및 휨강도 변수 해석)

  • Choe, Hyeong-Bae;Lee, Sang-Youl
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.363-370
    • /
    • 2021
  • In this paper, we presented an optimized crack and flexural strength analysis of a glass-fiber reinforced polymer (GFRP) rebar, used as reinforcements for in-site railway concrete slabs. The insulation performance of a GFRP rebar has the advantage of avoiding the loss of signal current in an audio frequency (AF) track circuit. A full-scale experiment, and three-dimensional finite element simulation results were compared to validate our approaches. Parametric numerical results revealed that the diameters and arrangements of the GFRP rebar had a significant effect on the flexural strength and crack control performances of the concrete track slabs. The results of this study could serve as a benchmark for future guidelines in designing more efficient, and economical concrete slabs using the GFRP rebar.

A Study on Coupling Coefficient Between Rail and Reinforcing Bars in Concrete Slab Track (콘크리트 슬래브궤도에서 레일과 철근 사이의 결합계수에 대한 연구)

  • Kim, Min-Seok;Lee, Sang-Hyeok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.405-411
    • /
    • 2009
  • Railway signaling system in a rapid transit using the ATC system the approved a speed limit to a train and a part of signaling system in a metro approved a distance which is possible to move. Referring to the way of transmitting train control information, there are the one transmitting it to the on-board system of a train using the direct track, the another transmitting it establishing an instrument, and the other transmitting an instrument by a railway track. The one is the method using the direct track as a conductor for composing the part of the track and attaining the information controlling a train by transmitting a signal to the track. It is used for the high-speed railway and the subway. The method using the track attains information by transmitting it to returned information, and the on-board system of a train attains it by magnetic coupling. Because many reinforcing bars on the concrete slab track are used, interaction between a rail and a reinforcing bar that is not produced on ballast track is made. Due to the interaction, the electric characteristic of rail is changed. In the current paper, we numerically computed the coupling coefficient between the rail and the reinforcing bar based on the concrete slab track throughout the model related to the rail and the reinforcing bar using the concrete slab track that is used in the second interval of the Gyeongbu high-speed railway, and we defined the coupling coefficient not changed in the electric characteristic of rail in the condition that there is no interaction between the rail and the reinforcing bar.

A Study on Reinforcement Method of Concrete Block for Direct Fixation Tracks on Serviced Light Rail Transit (공용중인 경전철 직결 궤도 콘크리트 도상블록의 보강 방안 연구)

  • Jung-Youl Choi;You-Song Kang;Dae-Hee Ahn;Jae-Min Han;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.633-640
    • /
    • 2023
  • In this study, numerical analysis was performed based on field investigation to derive an appropriate reinforcement method by analyzing the displacement behavior characteristics of concrete blocks generated in the direct fixation track on the bridges of the serviced light rail transit. The track of this study was a direct fixation track on a sharp curved track, and the problem of movement of the concrete blocks installed on the bridge deck in the longitudinal and lateral directions occurred. In this study, based on the finite element model using 3D solid elements, the behavior of the direct fixation track that could be occurred under operating load conditions was analyzed. In addition, the reinforcement effect of various reinforcement methods was analyzed. As a result of analyzing the lateral displacement before and after reinforcement, it was analyzed that the maximum lateral displacement after reinforcement under the extreme lateral wheel loads significantly decreased to about 3% (about 0.1mm) compared to before reinforcement. In addition, as a result of examining the generated stress of the filling mortar, bridge decks, and reinforcing bar, it was analyzed that all of them secured a sufficient safety factor of 2.6 or higher, and the optimal conditions for the reinforcement method were derived. Therefore, it is judged that the number of anchoring reinforcements and symmetrical anchor placement reviewed in this study will be effective in controlling the occurrence of lateral displacement of concrete blocks and securing the structural integrity of bridges and concrete blocks.

Evaluation of Debonding Defects in Railway Concrete Slabs Using Shear Wave Tomography (전단파 토모그래피를 활용한 철도 콘크리트 궤도 슬래브 층분리 결함 평가)

  • Lee, Jin-Wook;Kee, Seong-Hoon;Lee, Kang Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • The main purpose of this study is to investigate the applicability of the shear wave tomography technology as a non-destructive testing method to evaluate the debonding between the track concrete layer (TCL) and the hydraulically stabilized based course (HSB) of concrete slab tracks for the Korea high-speed railway system. A commercially available multi-channel shear wave measurement device (MIRA) is used to evaluate debonding defects in full-scaled mock-up test specimen that was designed and constructed according to the Rheda 200 system. A part of the mock-up specimen includes two artificial debonding defects with a length and a width of 400mm and thicknesses of 5mm and 10mm, respectively. The tomography images obtained by a MIRA on the surface of the concrete specimens are effective for visualizing the debonding defects in concrete. In this study, a simple image processing method is proposed to suppress the noisy signals reflected from the embedded items (reinforcing steel, precast sleeper, insert, etc.) in TCL, which significantly improves the readability of debonding defects in shear wave tomography images. Results show that debonding maps constructed in this study are effective for visualizing the spatial distribution and the depths of the debondiing defects in the railway concrete slab specimen.