• 제목/요약/키워드: 철근콘크리트 기둥

검색결과 611건 처리시간 0.181초

해운대 두산 위브 더 제니스 구조설계 (Structural Design And Analysis of Haeundae Doosan We've The Zenith)

  • 박기홍;박석진
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2008년도 정기학술발표대회 논문집
    • /
    • pp.93-98
    • /
    • 2008
  • 해운대 두산 위브 더 제니스는 부산시 해운대구 수영만에 인접한 매립지에 세워지는 건축물로서 현재 지하 터파기 및 일부 기초공사 진행 중인 건축물이다. 타워동의 주 용도는 주거용 건축물로 높이 300m, 층수 80층으로 이루어져 주거용 콘크리트 건축물로서는 동양 최대의 높이를 자랑하고 있다. 타워는 총 3개의 고충타워와 1개의 저층타워로 이루어져 있으며 지하 저층부 길이가 가로폭 230m, 세로폭 200m로 전체가 한 개의 덩어리로 이루어진 구조물이다. 횡력저항 시스템은 중앙의 $700{\sim}800mm$ 두께의 코어벽체가 4방향의 외곽으로 확장되어 있으며 슬래브 외곽주변을 철근콘크리트 기둥을 설치하여 건축적인 요구사항에 부합되면서 횡방향 하중에 아주 효율적으로 저항할 수 있도록 계획되었으며, 풍 진동에 대해서도 아주 만족스러운 결과를 가져다주었다. 슬래브 바닥 시스템은 두께 250mm인 플랫 플레이트를 적용하여 충고의 최소화 및 외주부의 테두리보나 드롭패널을 설치하지 않아 시공성 및 공기단축에 부합되도록 계획되었다. 시공 시 및 준공 후에도 지속적인 상시 모니터링 시스템을 구축하여 계측된 자료를 기준으로 구조물의 안전성과 사용성을 객관적으로 판단하고 검증할 수 있도록 하였다.

  • PDF

유한요소법을 이용한 구조물의 발파해체 붕괴거동 및 지반진동 모사에 관한 연구 (Simulation of Blasting Demolition of Reinforced Concrete Structures and Ground Vibration using Finite Element Method)

  • 최주희;정재웅;전석원
    • 터널과지하공간
    • /
    • 제19권3호
    • /
    • pp.190-202
    • /
    • 2009
  • 발파해체는 다른 해체방법과는 달리 실패에 따라 발생할 수 있는 인적 물적 자원의 손실이 매우 크기 때문에, 이를 사전에 예측 방지 할 수 있는 수치해석을 이용한 시뮬레이션 개발이 필수적이라 할 수 있다. 본 연구에서는 기둥 보 접합부의 특성구현 및 철근과 콘크리트의 강도 구현 등에 관하여 유한 요소법에 바탕을 둔 상용코드인 LS-DYNA를 이용하여, 실제 발파대상 구조물이 가지고 있는 복잡한 철근 배근을 단순화하여 고려하는 기법을 제안 하였으며, 또한 본 연구에서 제안한 기법을 이용하여 축소모형 실험 및 실제 구조물의 발파해체의 모사를 통해 검증하였다.

초기 손상을 입은 비연성 철근콘크리트 골조의 FRP재킷으로 보수된 기둥의 수치해석모델 (Numerical Column Model for Damaged Non-ductile Reinforced Concrete Frame Repaired Using FRP Jacketing System)

  • 신지욱;전종수;김준희
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.291-298
    • /
    • 2018
  • Existing reinforced concrete building structures have seismic vulnerabilities under successive earthquakes (or mainshock-aftershock sequences) due to their inadequate column detailing, which leads to shear failure in the columns. To improve the shear capacity and ductility of the shear-critical columns, a fiber-reinforced polymer jacketing system has been widely used for seismic retrofit and repair. This study proposed a numerical modeling technique for damaged reinforced concrete columns repaired using the fiber-reinforced polymer jacketing system and validated the numerical responses with past experimental results. The column model well captured the experimental results in terms of lateral forces, stiffness, energy dissipation and failure modes. The proposed column modeling method enables to predict post-repair effects on structures initially damaged by mainshock.

철근콘크리트 기둥의 성능설계를 위한 모멘트 초과강도계수에 관한 연구 (Re-evaluated Overstrength Factor for Capacity Design of Reinforced Concrete Bridge Columns)

  • 이재훈;최진호;고성현;권순홍
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.308-315
    • /
    • 2005
  • The capacity protection is normally related with slenderness effect of the columns, force transfer in connections between columns and adjacent elements, and shear design of columns. It is intends to prevent brittle failure of the structural components of bridges, so that the whole bridge system may show ductile behavior and failure during earthquake events. For bridge systems, this means it is necessary to assess the overstrength capacity of columns prior to proceeding with the design of foundation and superstructure. The objective of this paper is to develop a capacity design approach that applies an overstrength factor for determination of possible maximum shear force in the plastic hinge zone of reinforced concrete bridge columns. In order to estimate and determine overstrength factor, material strength was developed to investigate for actual material strength total 3,407 steel and 5,405 concrete by domestic product. Based on actual material strength, this paper was conducted on moment overstrength factors using moment-curvature analysis program. And also design recommendations for capacity design are presented to revise the annual report, KEERC 2002.

  • PDF

강관구속 고강도 철근콘크리트 기둥의 내진성능 (Seismic Performance of High-Stringth RC Short Columns Confined in Rectangular Steel Tube)

  • 한병찬
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.182-190
    • /
    • 1997
  • A new method to prevent reinforced concrete columns from brittle failure. The method is called transversely reinforcing method in which only the critical regions are confined in steel tube. The steel tubes can change the failure mode of the latter columns from the shear to the flexure. The steel tubes also increase the compressive strength, shear strength and deformation capacity of the infilled concrete. The following conclusions are reached on bases of the study on the seismic performance of the high-strength RC rectangualr short columns confined in steel tube with shear span tho depth ratio of 2.0 The brittle shear failure of high-strength reinforced concrete short columns with large amount of longitudinal bars, which cannot prevented by using the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the maximum amount of welded hoops, can be prevented by using the steel tube which confines all the concrete inclusive of cover concrete. High-strength RC short columns confined in rectangular steel tube provided excellent enhancement of seismic performance but, found that plastic buckling of the steel tube in the hinge regions tended to occur when the columns were subjected to large cyclic lateral displacements. In order to prevent the plastic buckling when the columns lies on large on cyclic lateral displacements, the steel ribs were used for columns. Tests have established that the columns provide excellent enhancement of seismic performance of inadequately confined columns.

  • PDF

강판으로 보강된 철근콘크리트 기둥의 구조적 거동에 관한 실험적 연구 (An Experimental Study on the Structural Behavior of Reinforced Concrete Columns Rehabilitated with Epoxy-Bonded Steel Plates)

  • 김진배;원영술;조철호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권3호
    • /
    • pp.269-277
    • /
    • 1999
  • The purpose of this study is to investigate the structural behavior of reinforced concrete columns rehabilitated with epoxy-bonded steel plates subjected to axial load. Eleven specimens were made to evaluate structural capacity of reinforced concrete columns rehabilitated with steel plates. This study considers the change of the internal force and the deformation of reinforced concrete column with reinforcing steel plates, and analyzes the effect of the improvement of strength and ductility. Based on the test results, this study brings the following conclusions. In case of the effect of reinforcement by the ratio of the same volume, the internal force for the test model, which the width of the reinforcing steel plate is small, is effectively higher. The smaller the width and the thickness of reinforcing steel plate, the more effective the effect of reinforcement is. For applying the theorical equation by Uzumeri, the maximum load and the coefficient of effective crossing reinforcement by the width and the thickness of steel plate reflected the properties of reinforcing steel plate.

  • PDF

격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 구조성능평가 (An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method)

  • 문홍비;이정인;이영학
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.41-49
    • /
    • 2022
  • In the case of columns in buildings with soft story, the concentration of stress due to the difference in stiffness can damage the columns. The irregularity of buildings including soft story requires retrofit because combined load of compression, bending, shear, and torsion acts on the structure. Concrete jacketing is advantageous in securing the strength and stiffness of existing members. However, the brittleness of concrete make it difficult to secure ductility to resist the large deformation, and the complicated construction process for integrity between the existing member and extended section reduces the constructability. In this study, two types of Steel Grid Reinforcement (SGR), which are Steel Wire Mesh (SWM) for integrity and Steel Fiber Non-Shrinkage Mortar (SFNM) for crack resistance are proposed. One reinforced concrete (RC) column with non-seismic details and two columns retrofitted with each different types of proposed method were manufactured. Seismic performance was analyzed for cyclic loading test in which a combined load of compression, bending, shear, and torsion was applied. As a result of the experiment, specimens retrofitted with proposed concrete jacketing method showed 862% of maximum load, 188% of maximum displacement and 1,324% of stiffness compared to non-retrofitted specimen.

화재피해를 받은 철근콘크리트 건축물의 기둥의 영향인자를 고려한 해석적 연구 (Numerical Study on the Fire Damaged Reinforced Concrete Building Structures Considering Influencing Fire Case and Parameters of Columns)

  • 서연우;손희주
    • 한국안전학회지
    • /
    • 제37권4호
    • /
    • pp.101-112
    • /
    • 2022
  • Expanding urbanization practices result in high numbers of buildings being developed in city centers. This high building concentration leads to an increased fire risk, resulting in higher casualty rates and increased economic damages compared to fires in the past. The purpose of this study was to analyze the structural behavior of fire-damaged reinforced concrete buildings using analytical methods and to suggest methods of improving fire resistance in the event of a fire. Damage levels were measured using commercial software to apply the finite element method, ABAQUS, and MIDAS GEN to the dataset. Load-deflection curves were calculated using the effective area and moment of inertia of the fire-damaged columns provided by ABAQUS. The results of this analysis indicate that fire-damaged beams with experience greater deflection from indoor fires than they will from outdoor fires. Fires that occurred on the middle floors were more dangerous than those occurring on higher floors, and eccentrically loaded columns experienced more damage than axially loaded columns. The results indicate that these methods accurately predict structural behaviors of fire damaged concrete columns by considering fire exposure area and eccentric loading.

격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 하중가력패턴에 따른 구조성능평가 (An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method under Loading Patterns)

  • 문홍비;노경민;이영학
    • 한국공간구조학회논문집
    • /
    • 제22권2호
    • /
    • pp.29-37
    • /
    • 2022
  • The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.

기계학습 기반 철근콘크리트 기둥에 대한 신속 파괴유형 예측 모델 개발 연구 (Machine Learning-Based Rapid Prediction Method of Failure Mode for Reinforced Concrete Column)

  • 김수빈;오근영;신지욱
    • 한국지진공학회논문집
    • /
    • 제28권2호
    • /
    • pp.113-119
    • /
    • 2024
  • Existing reinforced concrete buildings with seismically deficient column details affect the overall behavior depending on the failure type of column. This study aims to develop and validate a machine learning-based prediction model for the column failure modes (shear, flexure-shear, and flexure failure modes). For this purpose, artificial neural network (ANN), K-nearest neighbor (KNN), decision tree (DT), and random forest (RF) models were used, considering previously collected experimental data. Using four machine learning methodologies, we developed a classification learning model that can predict the column failure modes in terms of the input variables using concrete compressive strength, steel yield strength, axial load ratio, height-to-dept aspect ratio, longitudinal reinforcement ratio, and transverse reinforcement ratio. The performance of each machine learning model was compared and verified by calculating accuracy, precision, recall, F1-Score, and ROC. Based on the performance measurements of the classification model, the RF model represents the highest average value of the classification model performance measurements among the considered learning methods, and it can conservatively predict the shear failure mode. Thus, the RF model can rapidly predict the column failure modes with simple column details.